RELAXATION TO EQUILIBRIUM IN DIFFUSIVE-THERMAL MODELS WITH A STRONGLY VARYING DIFFUSION LENGTH-SCALE

被引:0
作者
Clavin, Paul [1 ]
Masse, Laurent [2 ]
Roquejoffre, Jean-Michel [3 ]
机构
[1] CNRS, UMR 6594, IRPHE, F-75700 Paris, France
[2] CEA, Bruyeres Le Chatel, Ile De France, France
[3] Univ Toulouse 3, CNRS, UMR 5219, Inst Math, F-31062 Toulouse, France
关键词
Ablation front; relaxation; strongly varying diffusivity; FREE-BOUNDARY; REGULARITY; FRONTS; FLAMES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider reaction-diffusion equations with a strongly varying diffusion length-scale. We provide a mathematical study of the relaxation towards the steady planar solution, in the context of infinitesimal disturbances whose wavelength is much shorter than the total thickness of the wave. The models under study are relevant in the description of ablation fronts encountered in inertial confinment fusion, when hydrodynamical effects are neglected.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 10 条
[1]  
Berestycki H, 2006, J EUR MATH SOC, V8, P195
[2]  
BERESTYCKI H, 1991, NONLINEAR PARTIAL DI, P65
[3]   C1,ALPHA REGULARITY OF THE FREE-BOUNDARY FOR THE N-DIMENSIONAL POROUS-MEDIA EQUATION [J].
CAFFARELLI, LA ;
WOLANSKI, NI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (07) :885-902
[4]   REGULARITY OF THE FREE-BOUNDARY FOR THE ONE-DIMENSIONAL FLOW OF GAS IN A POROUS-MEDIUM [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (06) :1193-1218
[5]   Instabilities of ablation fronts in inertial confinement fusion: A comparison with flames [J].
Clavin, P ;
Masse, L .
PHYSICS OF PLASMAS, 2004, 11 (02) :690-705
[6]   Dynamics of combustion fronts in premixed gases: From flames to detonations [J].
Clavin, P .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 :569-585
[7]   Bifurcations of travelling waves in the thermo-diffusive model for flame propagation [J].
Glangetas, L ;
Roquejoffre, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (04) :341-402
[8]   The semiclassical regime for ablation front models [J].
Helffer, Bernard ;
Lafitte, Olivier .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (03) :371-409
[9]  
REED M, METHODS MODERN MATH, V2
[10]   The linear Darrieus-Landau and Rayleigh-Taylor instabilities in inertial confinement fusion revisited [J].
Sanz, J. ;
Masse, L. ;
Clavin, P. .
PHYSICS OF PLASMAS, 2006, 13 (10)