A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems

被引:19
作者
Wang, Haifeng [1 ]
Zhang, Yufeng [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 99卷
基金
中国国家自然科学基金;
关键词
Extended matrix spectral problem; Hamiltonian structure; Symmetry; Non-semisimple Lie algebra g; LIE-ALGEBRA; HIERARCHY;
D O I
10.1016/j.cnsns.2021.105822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first introduce a Lie algebra g ($) over tilde which can be used to construct integrable couplings of some isospectral and nonisospectral problems. As two applications of the Lie algebra g ($) over tilde, the MKdV spectral problem is enlarged to an isospectral problem and the AKNS spectral problem is expanded to a nonisopectral problem. Then, two integrable couplings are obtained by solving an isospectral and a nonisospectral zero-curvature equations. We find that the two hierarchies that we obtain have bi-Hamiltonian structure of combinatorial form. Additionally, some symmetries and conserved quantities of the resulting hierarchy are investigated. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 38 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
Chang H, 2018, J APPL MATH PHYS, V6, P1346
[3]   A simple method for generating integrable hierarchies with multi-potential functions [J].
Fan, E ;
Zhang, YF .
CHAOS SOLITONS & FRACTALS, 2005, 25 (02) :425-439
[4]   A GENERALIZED KAUP-NEWELL SPECTRAL PROBLEM, SOLITON-EQUATIONS AND FINITE-DIMENSIONAL INTEGRABLE SYSTEMS [J].
GENG, XG ;
MA, WX .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1995, 108 (04) :477-486
[5]   Nonlinear bi-integrable couplings of a generalized Kaup-Newell type soliton hierarchy [J].
Guan, Xue ;
Zhang, Huiqun ;
Liu, Wenjun .
OPTIK, 2018, 172 :1003-1011
[6]   A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling [J].
Guo, FK ;
Zhang, YF .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :5793-5803
[7]   Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy [J].
Li, Chuanzhong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (01)
[8]  
Li CZ, 2015, THEOR MATH PHYS+, V185, P1614, DOI [10.1007/s11232-015-0368-x, 10.4213/tmf8857]
[9]  
Li Y.S., 1982, ACTA MATH SIN, V25, P464
[10]  
Li Y. S., 1982, Sci. Sin. A, V25, P385