Thick clusters for the radially symmetric nonlinear Schrodinger equation

被引:8
作者
Felmer, Patricio [1 ]
Martinez, Salome [1 ]
机构
[1] Univ Chile, CNRS UChile, UMR2071, Dept Ingn Matemat, Santiago, Chile
关键词
D O I
10.1007/s00526-007-0112-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of radially symmetric solutions to the nonlinear Schrodinger equation epsilon(2) Delta u - V (r)u + vertical bar u vertical bar(p-1) u = 0 in B, partial derivative u/partial derivative n = 0 on partial derivative B, where B is a ball in R-N, 1 < p < (N + 2)/(N - 2), N >= 3 and the potential V is radially symmetric. We construct positive clustering solutions in an annulus having O(1/epsilon) critical points, as well as sign changing solutions with O(1/epsilon) zeroes concentrating near zero.
引用
收藏
页码:231 / 261
页数:31
相关论文
共 35 条
[1]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :297-329
[2]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[3]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[4]   The semiclassical limit of the nonlinear Schrodinger equation in a radial potential [J].
Benci, V ;
D'Aprile, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :109-138
[5]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[6]   Semi-classical limit for radial non-linear Schrodinger equation [J].
Castro, R ;
Felmer, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (02) :411-435
[7]  
CHOW SN, 1986, CASOPIS PEST MAT, V11, P14
[8]   Nonlinear Schrodinger equations: concentration on weighted geodesics in the semi-classical limit [J].
del Pino, M ;
Kowalczyk, M ;
Wei, JC .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (04) :223-228
[9]   On the role of mean curvature in some singularly perturbed Neumann problems [J].
Del Pino, M ;
Felmer, PL ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :63-79
[10]  
del Pino M, 1999, INDIANA U MATH J, V48, P883