PENCIL-BEAM APPROXIMATION OF FRACTIONAL FOKKER-PLANCK

被引:1
作者
Bal, Guillaume [1 ]
Palacios, Benjamin [2 ]
机构
[1] Univ Chicago, Dept Stat & Math, 5747 S Ellis Ave,Jones 120B, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Stat, 5747 S Ellis Ave,Jones 316, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Radiative transfer; Fokker-Planck; fractional Laplacian; error estimates; Wasserstein distance; singular ker-nel; RADIATIVE-TRANSFER; TRANSPORT; REGULARITY; EQUATION;
D O I
10.3934/krm.2021024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the modeling of light beams propagating in highly forward-peaked turbulent media by fractional Fokker-Planck equations and their approximations by fractional Fermi pencil beam models. We obtain an error estimate in a 1-Wasserstein distance for the latter model showing that beam spreading is well captured by the Fermi pencil-beam approximation in the small diffusion limit.
引用
收藏
页码:767 / 817
页数:51
相关论文
共 28 条
[1]   FRACTIONAL ORDER KINETIC EQUATIONS AND HYPOELLIPTICITY [J].
Alexandre, R. .
ANALYSIS AND APPLICATIONS, 2012, 10 (03) :237-247
[2]   The Radiative Transfer Equation in the Forward-Peaked Regime [J].
Alonso, Ricardo ;
Sun, Weiran .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (03) :1233-1286
[3]  
Armstrong S., 2019, ARXIV190204037
[4]   PENCIL-BEAM APPROXIMATION OF STATIONARY FOKKER-PLANCK [J].
Bal, Guillaume ;
Palacios, Benjamin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) :3487-3519
[5]   GENERALIZED STABILITY ESTIMATES IN INVERSE TRANSPORT THEORY [J].
Bal, Guillaume ;
Jollivet, Alexandre .
INVERSE PROBLEMS AND IMAGING, 2018, 12 (01) :59-90
[6]   KINETIC LIMITS FOR WAVES IN A RANDOM MEDIUM [J].
Bal, Guillaume ;
Komorowski, Tomasz ;
Ryzhik, Lenya .
KINETIC AND RELATED MODELS, 2010, 3 (04) :529-644
[7]   Inverse transport theory and applications [J].
Bal, Guillaume .
INVERSE PROBLEMS, 2009, 25 (05)
[8]  
BARDOS C, 1970, ANN SCI ECOLE NORM S, V3, P185
[9]  
Borgers C, 1996, NUCL SCI ENG, V123, P343
[10]  
Borgers C, 1996, MED PHYS, V23, P1749, DOI 10.1118/1.597832