A reinforcement learning approach for quantum state engineering

被引:42
作者
Mackeprang, Jelena [1 ]
Dasari, Durga B. Rao [1 ]
Wrachtrup, Jorg [1 ,2 ]
机构
[1] Univ Stuttgart, Phys Inst 3, D-70569 Stuttgart, Germany
[2] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
关键词
Quantum state engineering; Quantum control; Deep reinforcement learning;
D O I
10.1007/s42484-020-00016-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) has become an attractive tool for solving various problems in different fields of physics, including the quantum domain. Here, we show how classical reinforcement learning (RL) could be used as a tool for quantum state engineering (QSE). We employ a measurement based control for QSE where the action sequences are determined by the choice of the measurement basis and the reward through the fidelity of obtaining the target state. Our analysis clearly displays a learning feature in QSE, for example in preparing arbitrary two-qubit entangled states and delivers successful action sequences that generalise previously found human solutions from exact quantum dynamics. We provide a systematic algorithmic approach for using RL for quantum protocols that deal with a non-trivial continuous state space, and discuss the scaling of these approaches for the preparation of larger entangled (cluster) states.
引用
收藏
页数:14
相关论文
共 32 条
[1]   Quantum error correction for the toric code using deep reinforcement learning [J].
Andreasson, Philip ;
Johansson, Joel ;
Liljestrand, Simon ;
Granath, Mats .
QUANTUM, 2019, 3
[2]  
[Anonymous], 2017, ICML
[3]  
[Anonymous], 2010, P 27 INT C MACH LEAR, DOI 10.5555/3104322.3104425
[4]   Projective simulation for artificial intelligence [J].
Briegel, Hans J. ;
De las Cuevas, Gemma .
SCIENTIFIC REPORTS, 2012, 2
[5]   Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator [J].
Bukov, Marin .
PHYSICAL REVIEW B, 2018, 98 (22)
[6]   Reinforcement Learning in Different Phases of Quantum Control [J].
Bukov, Marin ;
Day, Alexandre G. R. ;
Sels, Dries ;
Weinberg, Phillip ;
Polkovnikov, Anatoli ;
Mehta, Pankaj .
PHYSICAL REVIEW X, 2018, 8 (03)
[7]   Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems [J].
Chen, Chunlin ;
Dong, Daoyi ;
Li, Han-Xiong ;
Chu, Jian ;
Tarn, Tzyh-Jong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (05) :920-933
[8]   The nitrogen-vacancy colour centre in diamond [J].
Doherty, Marcus W. ;
Manson, Neil B. ;
Delaney, Paul ;
Jelezko, Fedor ;
Wrachtrup, Joerg ;
Hollenberg, Lloyd C. L. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 528 (01) :1-45
[9]   Reinforcement Learning with Neural Networks for Quantum Feedback [J].
Foesel, Thomas ;
Tighineanu, Petru ;
Weiss, Talitha ;
Marquardt, Florian .
PHYSICAL REVIEW X, 2018, 8 (03)
[10]   Purification of an unpolarized spin ensemble into entangled singlet pairs [J].
Greiner, Johannes N. ;
Dasari, Durga Bhaktavatsala Rao ;
Wrachtrup, Joerg .
SCIENTIFIC REPORTS, 2017, 7