Solving the stochastic steady-state diffusion problem using multigrid

被引:36
作者
Elman, Howard
Furnival, Darran [1 ]
机构
[1] Univ Maryland, Appl Math & Sci Comp Program, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Karhunen-Loeve expansion; multigrid; polynomial chaos;
D O I
10.1093/imanum/drm006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study multigrid for solving the stochastic steady-state diffusion problem. We operate under the mild assumption that the diffusion coefficient takes the form of a finite Karhunen-Loeve expansion. The problem is discretized using a finite-element methodology using the polynomial chaos method to discretize the stochastic part of the problem. We apply a multigrid algorithm to the stochastic problem in which the spatial discretization is varied from grid to grid while the stochastic discretization is held constant. We then show, theoretically and experimentally, that the convergence rate is independent of the spatial discretization, as in the deterministic case, and the stochastic discretization.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 35 条
[21]   NOx prediction in 3-D turbulent diffusion flames by using implicit multigrid methods [J].
Liao, CM ;
Liu, ZI ;
Zheng, XQ ;
Liu, CQ .
COMBUSTION SCIENCE AND TECHNOLOGY, 1996, 119 (1-6) :219-260
[22]   Aircraft landing gear greased slider bearing steady-state thermo-elastohydrodynamic concept model [J].
Heirendt, Laurent ;
Liu, Hugh H. T. ;
Wang, Phillip .
TRIBOLOGY INTERNATIONAL, 2015, 82 :453-463
[23]   Multigrid solution of the optical flow system using a combined diffusion- and curvature-based regularizer [J].
Koestler, H. ;
Ruhnau, K. ;
Wienands, R. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (2-3) :201-218
[24]   Convergence of V-cycle and F-cycle multigrid methods for the biharmonic problem using the morley element [J].
Zhao, J .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 :112-132
[25]   Study on computational efficiency of composite schemes for convection-diffusion equations using single-grid and multigrid methods [J].
Li, Jingfa ;
Yu, Bo ;
Wang, Yi ;
Tang, Yawen ;
Wang, Huijie .
JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2015, 10 (01)
[26]   Analysis of the Stochastic Quarter-Five Spot Problem Using Polynomial Chaos [J].
AbdelFattah, Hesham ;
Al-Johani, Amnah ;
El-Beltagy, Mohamed .
MOLECULES, 2020, 25 (15)
[27]   Convergence of V- and F-cycle multigrid methods for the biharmonic problem using the Hsieh-Clough-Tocher element [J].
Zhao, J .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (03) :451-471
[28]   A FETI-DP-BASED PARALLEL ALGORITHM FOR SOLVING HIGH DIMENSIONAL STOCHASTIC PDES USING COLLOCATION [J].
Ajith, Gopika ;
Ghosh, Debraj .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (03) :1-15
[29]   LEARNING IN MODAL SPACE: SOLVING TIME-DEPENDENT STOCHASTIC PDEs USING PHYSICS-INFORMED NEURAL NETWORKS [J].
Zhang, Dongkun ;
Guo, Ling ;
Karniadakis, George Em .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02) :A639-A665
[30]   Cardiac Position Sensitivity Study in the Electrocardiographic Forward Problem Using Stochastic Collocation and Boundary Element Methods [J].
Darrell J. Swenson ;
Sarah E. Geneser ;
Jeroen G. Stinstra ;
Robert M. Kirby ;
Rob S. MacLeod .
Annals of Biomedical Engineering, 2011, 39 :2900-2910