A CANONICAL DECOMPOSITION OF COMPLEX SYMMETRIC OPERATORS

被引:36
作者
Guo, Kunyu [1 ]
Zhu, Sen [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
Complex symmetric operator; transpose; UET operator; canonical decomposition; irreducible operator; completely reducible operator; Toeplitz operator; TRUNCATED TOEPLITZ-OPERATORS; RANGE PRESERVING-MAPS; UNITARY EQUIVALENCE; NUMERICAL RADIUS; WEIGHTED SHIFTS; SPECTRAL-RADIUS; MATRICES; NORM; SIMILARITY;
D O I
10.7900/jot.2013aug15.2007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An operator Ton a complex Hilbert space H is said to be complex symmetric if there exists a conjugate-linear, isometric involution C : H -> H so that CTC = T*. In this paper, we obtain a canonical decomposition of complex symmetric operators. This result decomposes general complex symmetric operators into direct sums of three kinds of elementary ones.
引用
收藏
页码:529 / 547
页数:19
相关论文
共 35 条
[1]  
ARVESON W, 1976, GRADUATE TEXTS MATH, V39
[2]  
Brown A., 1964, J. Reine. Angew. Math, V213, P89
[3]   ON AN EXTREMAL PROBLEM OF GARCIA AND ROSS [J].
Chalendar, I. ;
Fricain, E. ;
Timotin, D. .
OPERATORS AND MATRICES, 2009, 3 (04) :541-546
[4]   Mappings preserving spectra of products of matrices [J].
Chan, Jor-Ting ;
Li, Chi-Kwong ;
Sze, Nung-Sing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :977-986
[5]   The characteristic function of a complex symmetric contraction [J].
Chevrot, Nicolas ;
Fricain, Emmanuel ;
Timotin, Dan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2877-2886
[6]   Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity [J].
Cima, Joseph A. ;
Garcia, Stephan Ramon ;
Ross, William T. ;
Wogen, Warren R. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) :595-620
[7]   TRUNCATED TOEPLITZ OPERATORS ON FINITE DIMENSIONAL SPACES [J].
Cima, Joseph A. ;
Ross, William T. ;
Wogen, Warren R. .
OPERATORS AND MATRICES, 2008, 2 (03) :357-369
[8]  
Douglas R G., 1998, GRADUATE TEXTS MATH
[9]   Essentially subnormal operators [J].
Feldman, NS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1171-1181
[10]  
Garcia S.R., 2013, Blaschke Products and Their Applications, V65, P265, DOI DOI 10.1007/978-1-4614-5341-315