Fibonacci type coding for the regular rectangular tilings of the hyperbolic plane

被引:0
作者
Margenstern, M [1 ]
Skordev, G
机构
[1] Univ Metz, UFR MIM, EA 3097, Lab Informat Theoret & Appl, Metz, France
[2] Univ Bremen, Fachbereich Math, CeVis, D-2800 Bremen 33, Germany
来源
JOURNAL OF UNIVERSAL COMPUTER SCIENCE | 2003年 / 9卷 / 05期
关键词
cellular automata; tiltings; hyperbolic plane;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The study of cellular automata (CA) on tilings of hyperbolic plane was initiated in [6]. Appropriate tools were developed which allow us to produce linear algorithms to implement cellular automata on the tiling of the hyperbolic plane with the regular rectangular pentagons, [8, 10]. In this paper we modify and improve these tools, generalise the algorithms and develop them for tilings of the hyperbolic plane with regular rectangular s-gons for s greater than or equal to 5. For this purpose a combinatorial structure of these tilings is studied.
引用
收藏
页码:398 / 422
页数:25
相关论文
共 14 条
  • [1] GOODMANNSTRAUSS C, UNPUB STRONGLY APERI
  • [2] HERRMANN F, 2000, INT WORKSH CELL AUT, P25
  • [3] Greedy numeration systems and regularity
    Hollander, M
    [J]. THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 111 - 133
  • [4] Hopcroft J. E., 2007, Introduction to Automata Theory, Languages and Computation
  • [5] Mann C.E, 2001, THESIS U ARKANSAS
  • [6] NP problems are tractable in the space of cellular automata in the hyperbolic plane
    Margenstern, M
    Morita, K
    [J]. THEORETICAL COMPUTER SCIENCE, 2001, 259 (1-2) : 99 - 128
  • [7] Margenstern M., 1999, J UNIVERS COMPUT SCI, V5, P563
  • [8] MARGENSTERN M, 2000, COMPUTER SCI J MOLDO, V8, P95
  • [9] MARGENSTERN M, 2000, INT WORKSH CELL AUT, P40
  • [10] MARGENSTERN M, 2002, IN PRESS P SCI 2002