Confined ferrofluid droplet in crossed magnetic fields

被引:11
作者
Jackson, D. P. [1 ]
Miranda, J. A.
机构
[1] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[2] Univ Fed Pernambuco, Dept Fis, LFTC, BR-50670901 Recife, PE, Brazil
关键词
D O I
10.1140/epje/i2007-10199-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
When a ferrofluid drop is trapped in a horizontal Hele-Shaw cell and subjected to a vertical magnetic field, a fingering instability results in the droplet evolving into a complex branched structure. This fingering instability depends on the magnetic field ramp rate but also depends critically on the initial state of the droplet. Small perturbations in the initial droplet can have a large influence on the resulting final pattern. By simultaneously applying a stabilizing (horizontal) azimuthal magnetic field, we gain more control over the mode selection mechanism. We perform a linear stability analysis that shows that any single mode can be selected by appropriately adjusting the strengths of the applied fields. This offers a unique and accurate mode selection mechanism for this confined magnetic fluid system. We present the results of numerical simulations that demonstrate that this mode selection mechanism is quite robust and "overpowers" any initial perturbations on the droplet. This provides a predictable way to obtain patterns with any desired number of fingers.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 50 条
[21]   MAGNETIC PROPERTIES OF FERROFLUID EMULSIONS: THE EFFECT OF DROPLET ELONGATION [J].
Ivanov, A. O. ;
Kuznetsova, O. B. ;
Subbotin, I. M. .
MAGNETOHYDRODYNAMICS, 2013, 49 (3-4) :287-292
[22]   MAGNETIC SUSCEPTIBILITY IN CROSSED ELECTRIC AND MAGNETIC FIELDS [J].
ARONOV, AG ;
PIKUS, GE .
SOVIET PHYSICS-SOLID STATE, 1964, 6 (02) :399-402
[23]   Nonlinear behaviour of the ferrofluid in orthogonal magnetic fields [J].
Baltag, O ;
Costandache, D .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 201 :123-125
[24]   Structure of ferrofluid nanofilms in homogeneous magnetic fields [J].
Jordanovic, Jelena ;
Klapp, Sabine H. L. .
PHYSICAL REVIEW E, 2009, 79 (02)
[25]   On demand manipulation of ferrofluid droplets by magnetic fields [J].
Ray, A. ;
Varma, V. B. ;
Jayaneel, P. J. ;
Sudharsan, N. M. ;
Wang, Z. P. ;
Ramanujan, R. V. .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 242 :760-768
[26]   Ferrofluid droplet breakup process and neck evolution under steady and pulse-width modulated magnetic fields [J].
Bijarchi, Mohamad Ali ;
Favakeh, Amirhossein ;
Mohammadi, Kaivan ;
Akbari, Ali ;
Shafii, Mohammad Behshad .
JOURNAL OF MOLECULAR LIQUIDS, 2021, 343
[27]   Numerical modeling of ferrofluid droplets in magnetic fields [J].
Afkhami, S. ;
Renardy, Y. ;
Renardy, M. ;
Riffled, J. S. ;
Pierre, T. G. St. .
XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 :884-+
[28]   FERROFLUID DROPLET BASED MICRO-MAGNETIC SENSORS AND ACTUATORS [J].
Makhoul-Mansour, Michelle ;
Challita, Elio J. ;
Freeman, Eric C. .
PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2017, VOL 1, 2017,
[29]   Fluid droplet deformation in ferrofluid exposed to a rotating magnetic field [J].
Cha, Luming ;
Wang, Ningyu ;
Prodanovic, Masa ;
Balhoff, Matthew T. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 555
[30]   Maximum spreading of a ferrofluid droplet under the effect of magnetic field [J].
Ahmed, Abrar ;
Fleck, Brian A. ;
Waghmare, Prashant R. .
PHYSICS OF FLUIDS, 2018, 30 (07)