Consolidated Bioprocessing: Synthetic Biology Routes to Fuels and Fine Chemicals

被引:23
作者
Banner, Alec [1 ]
Toogood, Helen S. [1 ]
Scrutton, Nigel S. [1 ]
机构
[1] Univ Manchester, SYNBIOCHEM Manchester Inst Biotechnol, E PSRC BBSRC Future Biomfg Res Hub, BBSRC EPSRC Synthet Biol Res Ctr,Dept Chem,Sch Na, 131 Princess St, Manchester M1 7DN, Lancs, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
lignocellulose degradation; cellulases; biofoundry; consolidated bioprocessing; synthetic biology; CELLULOSIC ETHANOL-PRODUCTION; GRAM-NEGATIVE BACTERIA; ESCHERICHIA-COLI; MICROBIAL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC BIOMASS; SUSTAINABLE PRODUCTION; ENZYMATIC-HYDROLYSIS; RECOMBINANT PROTEINS; BIOFUEL PRODUCTION;
D O I
10.3390/microorganisms9051079
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The long road from emerging biotechnologies to commercial "green" biosynthetic routes for chemical production relies in part on efficient microbial use of sustainable and renewable waste biomass feedstocks. One solution is to apply the consolidated bioprocessing approach, whereby microorganisms convert lignocellulose waste into advanced fuels and other chemicals. As lignocellulose is a highly complex network of polymers, enzymatic degradation or "saccharification" requires a range of cellulolytic enzymes acting synergistically to release the abundant sugars contained within. Complications arise from the need for extracellular localisation of cellulolytic enzymes, whether they be free or cell-associated. This review highlights the current progress in the consolidated bioprocessing approach, whereby microbial chassis are engineered to grow on lignocellulose as sole carbon sources whilst generating commercially useful chemicals. Future perspectives in the emerging biofoundry approach with bacterial hosts are discussed, where solutions to existing bottlenecks could potentially be overcome though the application of high throughput and iterative Design-Build-Test-Learn methodologies. These rapid automated pathway building infrastructures could be adapted for addressing the challenges of increasing cellulolytic capabilities of microorganisms to commercially viable levels.
引用
收藏
页数:20
相关论文
共 148 条
[1]   Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli [J].
Ajikumar, Parayil Kumaran ;
Xiao, Wen-Hai ;
Tyo, Keith E. J. ;
Wang, Yong ;
Simeon, Fritz ;
Leonard, Effendi ;
Mucha, Oliver ;
Phon, Too Heng ;
Pfeifer, Blaine ;
Stephanopoulos, Gregory .
SCIENCE, 2010, 330 (6000) :70-74
[2]   Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass [J].
Akhtar, Nadeem ;
Gupta, Kanika ;
Goyal, Dinesh ;
Goyal, Arun .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2016, 35 (02) :489-511
[3]   Engineering the ligninolytic enzyme consortium [J].
Alcalde, Miguel .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (03) :155-162
[4]   Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production [J].
Alonso-Gutierrez, Jorge ;
Chan, Rossana ;
Batth, Tanveer S. ;
Adams, Paul D. ;
Keasling, Jay D. ;
Petzold, Christopher J. ;
Lee, Taek Soon .
METABOLIC ENGINEERING, 2013, 19 :33-41
[5]   Enzymatic hydrolysis of biomass from wood [J].
Alvarez, Consolacion ;
Manuel Reyes-Sosa, Francisco ;
Diez, Bruno .
MICROBIAL BIOTECHNOLOGY, 2016, 9 (02) :149-156
[6]   Renewable and tuneable bio-LPG blends derived from amino acids [J].
Amer, Mohamed ;
Hoeven, Robin ;
Kelly, Paul ;
Faulkner, Matthew ;
Smith, Michael H. ;
Toogood, Helen S. ;
Scrutton, Nigel S. .
BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
[7]  
Amer M, 2020, ENERG ENVIRON SCI, V13, P1818, DOI [10.1039/d0ee00095g, 10.1039/D0EE00095G]
[8]   Metabolic engineering of Saccharomyces cerevisiae for linalool production [J].
Amiri, Pegah ;
Shahpiri, Azar ;
Asadollahi, Mohammad Ali ;
Momenbeik, Fariborz ;
Partow, Siavash .
BIOTECHNOLOGY LETTERS, 2016, 38 (03) :503-508
[9]   Constructing a yeast to express the largest cellulosome complex on the cell surface [J].
Anandharaj, Marimuthu ;
Lin, Yu-Ju ;
Rani, Rizwana Parveen ;
Nadendla, Eswar Kumar ;
Ho, Meng-Chiao ;
Huang, Chieh-Chen ;
Cheng, Jan-Fang ;
Chang, Jui-Jen ;
Li, Wen-Hsiung .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (05) :2385-2394
[10]   Green Chemistry: Principles and Practice [J].
Anastas, Paul ;
Eghbali, Nicolas .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :301-312