A correlation-based misfit criterion for wave-equation traveltime tomography

被引:182
作者
van Leeuwen, T. [1 ]
Mulder, W. A. [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Geotechnol, NL-2600 GA Delft, Netherlands
[2] Shell Int Explorat & Prod BV, NL-2280 AB Rijswijk, Netherlands
关键词
Inverse theory; Body waves; Seismic tomography; VELOCITY ANALYSIS; INVERSION;
D O I
10.1111/j.1365-246X.2010.04681.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
P>Wave-equation traveltime tomography tries to obtain a subsurface velocity model from seismic data, either passive or active, that explains their traveltimes. A key step is the extraction of traveltime differences, or relative phase shifts, between observed and modelled finite-frequency waveforms. A standard approach involves a correlation of the observed and measured waveforms. When the amplitude spectra of the waveforms are identical, the maximum of the correlation is indicative of the relative phase shift. When the amplitude spectra are not identical, however, this argument is no longer valid. We propose an alternative criterion to measure the relative phase shift. This misfit criterion is a weighted norm of the correlation and is less sensitive to differences in the amplitude spectra. For practical application it is important to use a sensitivity kernel that is consistent with the way the misfit is measured. We derive this sensitivity kernel and show how it differs from the standard banana-doughnut sensitivity kernel. We illustrate the approach on a cross-well data set.
引用
收藏
页码:1383 / 1394
页数:12
相关论文
共 21 条
[1]   WAVE-FORM INVERSION USING SECONDARY OBSERVABLES [J].
CARA, M ;
LEVEQUE, JJ .
GEOPHYSICAL RESEARCH LETTERS, 1987, 14 (10) :1046-1049
[2]   On sensitivity kernels for 'wave-equation' transmission tomography [J].
de Hoop, MV ;
van der Hilst, RD .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 160 (02) :621-633
[3]  
FOLLAND GB, 1989, ANN MATH STUDIES
[4]   GENERALIZED SEISMOLOGICAL DATA FUNCTIONALS [J].
GEE, LS ;
JORDAN, TH .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1992, 111 (02) :363-390
[5]  
HOrmann G., 2002, Appl. Anal, V81, P1443, DOI DOI 10.1080/0003681021000035489
[6]   The exact solution of the time-harmonic wave equation for a linear velocity profile [J].
Kuvshinov, Boris N. ;
Mulder, Wim A. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 167 (02) :659-662
[7]   WAVE-EQUATION TRAVELTIME INVERSION [J].
LUO, Y ;
SCHUSTER, GT .
GEOPHYSICS, 1991, 56 (05) :645-653
[8]   Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox [J].
Marquering, H ;
Dahlen, FA ;
Nolet, G .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 137 (03) :805-815
[9]  
MEHTA K, 2008, SEG EXP ABSTR, V27, P1372
[10]  
MULDER W, 2002, EAGE EXP ABSTR, pE15