Understanding extreme quasar optical variability with CRTS - I. Major AGN flares

被引:97
作者
Graham, Matthew J. [1 ]
Djorgovski, S. G. [1 ]
Drake, Andrew J. [1 ]
Stern, Daniel [2 ]
Mahabal, Ashish A. [1 ]
Glikman, Eilat [3 ]
Larson, Steve [4 ]
Christensen, Eric [4 ]
机构
[1] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
[3] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[4] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
methods: data analysis; techniques: photometric; surveys; quasars: general; SOUTHERN SPECTROPHOTOMETRIC STANDARDS; BLACK-HOLE BINARY; STELLAR; ABSORPTION; DISCOVERY; REDSHIFTS; EMISSION; SKY;
D O I
10.1093/mnras/stx1456
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Delta m = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.
引用
收藏
页码:4112 / 4132
页数:21
相关论文
共 76 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
Abbott B. P., PHYS REV LETT, V116
[3]  
[Anonymous], 1 YEAR MAXI MONITORI
[4]  
[Anonymous], APJ
[5]  
[Anonymous], PREPRINT
[6]  
[Anonymous], AJ
[7]  
[Anonymous], A A
[8]  
[Anonymous], A A
[9]  
[Anonymous], NAT ASTRON
[10]  
[Anonymous], 2016, MNRAS, DOI DOI 10.1093/MNRAS/STV2997