The blow-up problem for a semilinear parabolic equation with a potential

被引:21
作者
Cortazar, Carmen
Elgueta, Manuel
Rossi, Julio D.
机构
[1] Inst Matemat & Fis Fundamental, Consejo Superior Invest Cient, Madrid, Spain
[2] Catholic Univ Chile, Dept Matemat, Santiago, Chile
关键词
blow-up; semilinear parabolic equations;
D O I
10.1016/j.jmaa.2007.01.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded smooth domain in R-N. We consider the problem u(t) = Delta u + V(x)u(P) in Omega x [0, T), with Dirichlet boundary conditions u = 0 on partial derivative Omega x [0, T) and initial datum u (x, 0) = M phi (x) where M >= 0, phi is positive and compatible with the boundary condition. We give estimates for the blow-up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow-up set concentrates near the points where phi(P-1) V attains its maximum. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 427
页数:10
相关论文
共 14 条
[2]   Blowup in diffusion equations: A survey [J].
Bandle, C ;
Brunner, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) :3-22
[3]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[4]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[5]  
Galaktionov VA, 1997, COMMUN PUR APPL MATH, V50, P1
[6]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[7]  
Giga Y., 1987, INDIANA U MATH J, V42, P1
[8]  
Herrero M. A., 1992, Differ. Integral Equ., V5, P973
[9]  
Herrero M. A., 1992, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V19, P381
[10]   Blow-up problems for a semilinear heat equation with large diffusion [J].
Ishige, K ;
Yagisita, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 212 (01) :114-128