Solar Power Forecasting Using Artificial Neural Networks

被引:0
作者
Abuella, Mohamed [1 ]
Chowdhury, Badrul [2 ]
机构
[1] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
[2] Univ N Carolina, Energy Prod & Infrastruct Ctr, Charlotte, NC 28223 USA
来源
2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS) | 2015年
关键词
Sensitivity Analysis; artificial neural networks; solar power forecasts;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, the rapid boost of variable energy generations particularly from wind and solar energy resources in the power grid has led to these generations becoming a noteworthy source of uncertainty with load behavior still being the main source of variability. Generation and load balance is required in the economic scheduling of the generating units and in electricity market trades. Energy forecasting can be used to mitigate some of the challenges that arise from the uncertainty in the resource. Solar power forecasting is witnessing a growing attention from the research community. The paper presents an artificial neural network model to produce solar power forecasts. Sensitivity analysis of several input variables for best selection, and comparison of the model performance with multiple linear regression and persistence models are also shown.
引用
收藏
页数:5
相关论文
共 8 条
[1]  
Abuella M, 2015, IEEE SOUTHEASTCON
[2]  
Botterud A., 2010, The Electricity Journal, V23, P71, DOI DOI 10.1016/J.TEJ.2010.03.006
[3]   Predicting the wind [J].
Ernst, Bernhard ;
Oakleaf, Brett ;
Ahlstrom, Mark L. ;
Lange, Matthias ;
Moehrlen, Corinna ;
Lange, Bernhard ;
Focken, Ulrich ;
Rohrig, Kurt .
IEEE POWER & ENERGY MAGAZINE, 2007, 5 (06) :78-89
[4]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[5]   Solar forecasting methods for renewable energy integration [J].
Inman, Rich H. ;
Pedro, Hugo T. C. ;
Coimbra, Carlos F. M. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (06) :535-576
[6]  
Kleissl J, 2013, SOLAR ENERGY FORECASTING AND RESOURCE ASSESSMENT, P1
[7]  
Lange M., 2006, Physical Approach to Short-Term Wind Power Prediction
[8]   Regional PV power prediction for improved grid integration [J].
Lorenz, Elke ;
Scheidsteger, Thomas ;
Hurka, Johannes ;
Heinemann, Detlev ;
Kurz, Christian .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07) :757-771