Analysis of Phase Velocity of Love Waves in Rigid and Soft Mountain Surfaces: Exponential Law Model

被引:6
作者
Bharti, Uma [1 ]
Vaishnav, Pramod Kumar [1 ]
Abo-Dahab, S. M. [2 ,3 ]
Bouslimi, Jamel [4 ]
Mahmoud, K. H. [5 ]
机构
[1] Thapar Inst Engn & Technol, Sch Math, Patiala 147001, India
[2] South Valley Univ, Dept Math, Fac Sci, Qena 83523, Egypt
[3] Luxor Univ, Fac Comp & Informat, Dept Comp Sci, Armant, Egypt
[4] Taif Univ, Dept Phys, Coll Sci, At Taif, Saudi Arabia
[5] Taif Univ, Dept Phys, Coll Khurma Univ Coll, At Taif, Saudi Arabia
关键词
POROUS HALF-SPACE; INITIAL STRESS; PROPAGATION; LAYER; BOUNDARY;
D O I
10.1155/2021/9929108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Irregularity may occur on the earth's surface in the form of mountains due to the imperfection of the earth's crust. To explore the influence of horizontally polarized shear waves on mountains, we considered the fluid-saturated porous medium (superficial layer) over an orthotropic semi-infinite medium with rigid (Model-I) and soft (Model-II) mountain surfaces for wave propagation. The mountain surface is defined mathematically as a periodic function of the time domain. The physical interpretation of materials' structure has been explained in rectangular Cartesian coordinate system originated at the contact interface of layer and half-space. The displacement of the mountains has been derived by solving energy equations analytically. The influence of rigid and soft mountain surfaces on the phase velocity of shear waves has been demonstrated graphically (we used MATLAB software for graphical representations).
引用
收藏
页数:12
相关论文
共 34 条
[1]   Love Waves in a Non-Homogeneous Orthotropic Magneto-Elastic Layer Under Initial Stress Overlying a Semi-Infinite Medium [J].
Abd-Alla, A. M. ;
Abo-Dahab, S. M. ;
Al-Thamali, T. A. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (01) :10-18
[2]   Propagation of Love Waves in an Orthotropic Granular Layer Under Initial Stress Overlying a Semi-infinite Granular Medium [J].
Ahmed, S. M. ;
Abo-Dahab, S. M. .
JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (12) :1845-1858
[3]  
[Anonymous], 2010, Appl. Math. Sci
[4]  
Biot M.A, 1965, MECH INCREMENTAL DEF, DOI DOI 10.1115/1.3627365
[5]   A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium [J].
Chen, Weiyun ;
Xia, Tangdai ;
Hu, Wentao .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (16-17) :2402-2412
[6]   Love waves in compressible elastic materials with a homogeneous initial stress [J].
Ejaz, K. ;
Shams, M. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (08) :2576-2590
[7]  
Ewing M., 1957, Elastic Waves in Layered Media
[8]   Love waves in a fluid-saturated porous layer under a rigid boundary and lying over an elastic half-space under gravity [J].
Ghorai, Anjana P. ;
Samal, S. K. ;
Mahanti, N. C. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (07) :1873-1883
[9]  
Gubbins D., 1990, Seismology and Plate Tectonics
[10]   Propagation of Love waves in non-homogeneous substratum over initially stressed heterogeneous half-space [J].
Gupta, S. ;
Majhi, D. K. ;
Kundu, S. ;
Vishwakarma, S. K. .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (02) :249-258