Machine learning model selection for predicting bathymetry

被引:8
作者
Moran, Nicholas [1 ,2 ]
Stringer, Ben [2 ]
Lin, Bruce [2 ]
Hoque, Md Tamjidul [1 ]
机构
[1] Univ New Orleans, Dept Comp Sci, New Orleans, LA 70148 USA
[2] US Naval Res Lab, Stennis Space Ctr, MS 39529 USA
关键词
Machine learning; Predicting bathymetry; Earth gravitational models; Classification; Genetic algorithms; SATELLITE ALTIMETRY;
D O I
10.1016/j.dsr.2022.103788
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
This research investigates the viability of using Machine Learning (ML) for predicting bathymetry. We built and trained several models using ocean features aggregated from multiple sources and predicted bathymetry from the ETOPO dataset at a 2-min resolution. Each model was evaluated to identify a global best fit, however we found that none performed well on a global scale. When training on subsets of the world, we observed that some models performed significantly better, which led to developing a novel model selection technique that identifies the best performing model and most relevant features for a given geospatial coverage. This leads to improved predictions and more reliable results. This model selection technique can be generalized to be applied to any set of models.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Correcting Image Refraction: Towards Accurate Aerial Image-Based Bathymetry Mapping in Shallow Waters
    Agrafiotis, Panagiotis
    Karantzalos, Konstantinos
    Georgopoulos, Andreas
    Skarlatos, Dimitrios
    [J]. REMOTE SENSING, 2020, 12 (02)
  • [2] Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS
    Becker, J. J.
    Sandwell, D. T.
    Smith, W. H. F.
    Braud, J.
    Binder, B.
    Depner, J.
    Fabre, D.
    Factor, J.
    Ingalls, S.
    Kim, S-H.
    Ladner, R.
    Marks, K.
    Nelson, S.
    Pharaoh, A.
    Trimmer, R.
    Von Rosenberg, J.
    Wallace, G.
    Weatherall, P.
    [J]. MARINE GEODESY, 2009, 32 (04) : 355 - 371
  • [3] Shallow water bathymetry from WorldView-2 stereo imagery using two-media photogrammetry
    Cao, Bincai
    Fang, Yong
    Jiang, Zhengzhi
    Gao, Li
    Hu, Haiyan
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2019, 52 (01) : 506 - 521
  • [4] US GODAE Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM)
    Chassignet, Eric P.
    Hurlburt, Harley E.
    Metzger, E. Joseph
    Smedstad, Ole Martin
    Cummings, James A.
    Halliwell, George R.
    Bleck, Rainer
    Baraille, Remy
    Wallcraft, Alan J.
    Lozano, Carlos
    Tolman, Hendrik L.
    Srinivasan, Ashwanth
    Hankin, Steve
    Cornillon, Peter
    Weisberg, Robert
    Barth, Alexander
    He, Ruoying
    Werner, Francisco
    Wilkin, John
    [J]. OCEANOGRAPHY, 2009, 22 (02) : 64 - 75
  • [5] Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: Mapping of two unnamed deep seamounts
    Jena, B.
    Kurian, P. J.
    Swain, D.
    Tyagi, A.
    Ravindra, R.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 16 : 1 - 4
  • [6] LASKE G., 2013, EGU2013 2658
  • [7] The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases
    Meissner, Thomas
    Wentz, Frank J.
    Le Vine, David M.
    [J]. REMOTE SENSING, 2018, 10 (07):
  • [8] National Geophysical Data Center, 1988, ETOPO 5 BATH TOP DAT
  • [9] Decoupling of iron and phosphate in the global ocean
    Parekh, P
    Follows, MJ
    Boyle, EA
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (02) : 1 - 16
  • [10] Pavlis Nikolaos, 2008, SEG TECHNICAL PROGRA, P761