ISNet: Individual Standardization Network for Speech Emotion Recognition

被引:23
|
作者
Fan, Weiquan [1 ]
Xu, Xiangmin [1 ]
Cai, Bolun [1 ]
Xing, Xiaofen [1 ]
机构
[1] South China Univ Technol, Sch Elect & Informat, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Speech recognition; Emotion recognition; Feature extraction; Benchmark testing; Standardization; Speech processing; Task analysis; Individual standardization network (ISNet); speech emotion recognition; individual differences; metric; dataset; CLASSIFICATION; ATTENTION; FEATURES; VOICE;
D O I
10.1109/TASLP.2022.3171965
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Speech emotion recognition plays an essential role in human-computer interaction. However, cross-individual representation learning and individual-agnostic systems are challenging due to the distribution deviation caused by individual differences. The existing related approaches mostly use the auxiliary task of speaker recognition to eliminate individual differences. Unfortunately, although these methods can reduce interindividual voiceprint differences, it is difficult to dissociate interindividual expression differences since each individual has its unique expression habits. In this paper, we propose an individual standardization network (ISNet) for speech emotion recognition to alleviate the problem of interindividual emotion confusion caused by individual differences. Specifically, we model individual benchmarks as representations of nonemotional neutral speech, and ISNet realizes individual standardization using the automatically generated benchmark, which improves the robustness of individual-agnostic emotion representations. In response to individual differences, we also propose more comprehensive and meaningful individual-level evaluation metrics. In addition, we continue our previous work to construct a challenging large-scale speech emotion dataset (LSSED). We propose a more reasonable division method of the training set and testing set to prevent individual information leakage. Experimental results on datasets of both large and small scales have proven the effectiveness of ISNet, and the new state-of-the-art performance is achieved under the same experimental conditions on IEMOCAP and LSSED.
引用
收藏
页码:1803 / 1814
页数:12
相关论文
共 50 条
  • [21] Speech Emotion Recognition and Deep Learning: An Extensive Validation Using Convolutional Neural Networks
    Ri, Francesco Ardan Dal
    Ciardi, Fabio Cifariello
    Conci, Nicola
    IEEE ACCESS, 2023, 11 : 116638 - 116649
  • [22] Multi-Task Semi-Supervised Adversarial Autoencoding for Speech Emotion Recognition
    Latif, Siddique
    Rana, Rajib
    Khalifa, Sara
    Jurdak, Raja
    Epps, Julien
    Schuller, Bjoern W.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 992 - 1004
  • [23] Investigation of the Effect of Increased Dimension Levels in Speech Emotion Recognition
    Wang, Haiyan
    Zhao, Xiaohui
    Zhao, Yanping
    IEEE ACCESS, 2022, 10 : 78123 - 78134
  • [24] Speech Emotion Recognition Considering Nonverbal Vocalization in Affective Conversations
    Hsu, Jia-Hao
    Su, Ming-Hsiang
    Wu, Chung-Hsien
    Chen, Yi-Hsuan
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 (29) : 1675 - 1686
  • [25] Semi-Supervised Speech Emotion Recognition With Ladder Networks
    Parthasarathy, Srinivas
    Busso, Carlos
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 2697 - 2709
  • [26] Deep scattering network for speech emotion recognition
    Singh, Premjeet
    Saha, Goutam
    Sahidullah, Md
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 131 - 135
  • [27] Speech Emotion Recognition with Hybrid Neural Network
    Wei, Chuanzheng
    Sun, Xiao
    Tian, Fang
    Ren, Fuji
    5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2019), 2019, : 298 - 302
  • [28] 3D Convolutional Neural Network for Speech Emotion Recognition With Its Realization on Intel CPU and NVIDIA GPU
    Falahzadeh, Mohammad Reza
    Farsa, Edris Zaman
    Harimi, Ali
    Ahmadi, Arash
    Abraham, Ajith
    IEEE ACCESS, 2022, 10 : 112460 - 112471
  • [29] Speech Emotion Recognition Based on Attention MCNN Combined With Gender Information
    Hu, Zhangfang
    LingHu, Kehuan
    Yu, Hongling
    Liao, Chenzhuo
    IEEE ACCESS, 2023, 11 : 50285 - 50294
  • [30] Persian Speech Emotion Recognition
    Savargiv, Mohammad
    Bastanfard, Azam
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,