Does stability of relativistic dissipative fluid dynamics imply causality?

被引:142
作者
Pu, Shi [1 ,3 ]
Koide, Tomoi [2 ]
Rischke, Dirk H. [1 ,2 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[3] Univ Sci & Technol China, Dept Modern Phys, Anhua 230026, Peoples R China
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 11期
关键词
THERMODYNAMICS; MODEL;
D O I
10.1103/PhysRevD.81.114039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the causality and stability of relativistic dissipative fluid dynamics in the absence of conserved charges. We perform a linear stability analysis in the rest frame of the fluid and find that the equations of relativistic dissipative fluid dynamics are always stable. We then perform a linear stability analysis in a Lorentz-boosted frame. Provided that the ratio of the relaxation time for the shear stress tensor tau(pi) to the sound attenuation length Gamma(s) = 4(eta)/3(epsilon + P) fulfills a certain asymptotic causality condition, the equations of motion give rise to stable solutions. Although the group velocity associated with perturbations may exceed the velocity of light in a certain finite range of wave numbers, we demonstrate that this does not violate causality, as long as the asymptotic causality condition is fulfilled. Finally, we compute the characteristic velocities and show that they remain below the velocity of light if the ratio tau(pi)/Gamma(s) fulfills the asymptotic causality condition.
引用
收藏
页数:16
相关论文
共 52 条
[1]   Azimuthal anisotropy at the relativistic heavy ion collider: The first and fourth harmonics [J].
Adams, J ;
Adler, C ;
Aggarwal, MM ;
Ahammed, Z ;
Amonett, J ;
Anderson, BD ;
Anderson, M ;
Arkhipkin, D ;
Averichev, GS ;
Badyal, SK ;
Balewski, J ;
Barannikova, O ;
Barnby, LS ;
Baudot, J ;
Bekele, S ;
Belaga, VV ;
Bellwied, R ;
Berger, J ;
Bezverkhny, BI ;
Bhardwaj, S ;
Bhaskar, P ;
Bhati, AK ;
Bichsel, H ;
Billmeier, A ;
Bland, LC ;
Blyth, CO ;
Bonner, BE ;
Botje, M ;
Boucham, A ;
Brandin, A ;
Bravar, A ;
Cadman, RV ;
Cai, XZ ;
Caines, H ;
S nchez, MCD ;
Carroll, J ;
Castillo, J ;
Castro, M ;
Cebra, D ;
Chaloupka, P ;
Chattopadhyay, S ;
Chen, HF ;
Chen, Y ;
Chernenko, SP ;
Cherney, M ;
Chikanian, A ;
Choi, B ;
Christie, W ;
Coffin, JP ;
Cormier, TM .
PHYSICAL REVIEW LETTERS, 2004, 92 (06)
[2]  
Adams J, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.052302
[3]  
Adler C, 2002, PHYS REV C, V66, DOI 10.1103/PhysRevC.66.034904
[4]  
[Anonymous], 1999, CLASSICAL ELECTRODYN
[5]  
[Anonymous], RHIC SCIENTISTS SERV
[6]   Relativistic viscous hydrodynamics, conformal invariance, and holography [J].
Baier, Rudolf ;
Romatschke, Paul ;
Son, Dam Thanh ;
Starinets, Andrei O. ;
Stephanov, Mikhail A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04)
[7]   From kinetic theory to dissipative fluid dynamics [J].
Betz, B. ;
Henkel, D. ;
Rischke, D. H. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 62, NO 2, 2009, 62 (02) :556-561
[8]   Complete second-order dissipative fluid dynamics [J].
Betz, B. ;
Henkel, D. ;
Rischke, D. H. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (06)
[9]   Aspects of causal viscous hydrodynamics [J].
Bhalerao, R. S. ;
Gupta, Sourendu .
PHYSICAL REVIEW C, 2008, 77 (01)
[10]   Relativistic Shock Waves in Viscous Gluon Matter [J].
Bouras, I. ;
Molnar, E. ;
Niemi, H. ;
Xu, Z. ;
El, A. ;
Fochler, O. ;
Greiner, C. ;
Rischke, D. H. .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)