FULL DISCRETIZATION OF SEMILINEAR STOCHASTIC WAVE EQUATIONS DRIVEN BY MULTIPLICATIVE NOISE

被引:59
作者
Anton, Rikard [1 ]
Cohen, David [1 ,2 ]
Larsson, Stig [3 ,4 ]
Wang, Xiaojie [5 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[2] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[3] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[5] Cent S Univ, Sch Math & Stat, CN-410083 Changsha, Hunan, Peoples R China
基金
瑞典研究理事会;
关键词
semilinear stochastic wave equation; multiplicative noise; strong convergence; trace formula; stochastic trigonometric methods; geometric numerical integration; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT METHODS; ADDITIVE NOISE; APPROXIMATION;
D O I
10.1137/15M101049X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete approximation of the semilinear stochastic wave equation driven by multiplicative noise is presented. A standard linear finite element approximation is used in space, and a stochastic trigonometric method is used for the temporal approximation. This explicit time integrator allows for mean-square error bounds independent of the space discretization and thus does not suffer from a step size restriction as in the often used Stormer-Verlet leapfrog scheme. Furthermore, it satisfies an almost trace formula (i.e., a linear drift of the expected value of the energy of the problem). Numerical experiments are presented and confirm the theoretical results.
引用
收藏
页码:1093 / 1119
页数:27
相关论文
共 23 条
[1]   WEAK CONVERGENCE FOR A SPATIAL APPROXIMATION OF THE NONLINEAR STOCHASTIC HEAT EQUATION [J].
Andersson, Adam ;
Larsson, Stig .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1335-1358
[2]  
[Anonymous], SCI COMPUT
[3]  
[Anonymous], 1992, ENCY MATH ITS APPL, DOI DOI 10.1017/CBO9780511666223
[4]  
[Anonymous], 1992, APPL MATH NEW YORK
[5]  
Belinskiy B. P., 2001, DISCRETE CONTIN DYNA, P39
[6]  
Chow PL, 2002, ANN APPL PROBAB, V12, P361
[7]   A fully discrete approximation of the one-dimensional stochastic wave equation [J].
Cohen, David ;
Quer-Sardanyons, Lluis .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) :400-420
[8]   A TRIGONOMETRIC METHOD FOR THE LINEAR STOCHASTIC WAVE EQUATION [J].
Cohen, David ;
Larsson, Stig ;
Sigg, Magdalena .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :204-222
[9]   On the numerical discretisation of stochastic oscillators [J].
Cohen, David .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (08) :1478-1495
[10]   The non-linear stochastic wave equation in high dimensions [J].
Conus, Daniel ;
Dalang, Robert C. .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :629-670