On global existence and scattering for the wave maps equation

被引:106
作者
Tataru, D [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
D O I
10.1353/ajm.2001.0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove global existence and scattering for the wave-maps equation in n+1 dimensions, n = 2, 3, for initial data which is small in the scale-invariant homogeneous Besov space (B) over dot(n/2)(2,1) x (B) over dot(n/2-1)(2,1). This result was proved in an earlier paper by the author for n greater than or equal to 4.
引用
收藏
页码:37 / 77
页数:41
相关论文
共 14 条
[1]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[2]  
Cazenave T, 1998, ANN I H POINCARE-PHY, V68, P315
[3]   ON THE REGULARITY OF SPHERICALLY SYMMETRICAL WAVE MAPS [J].
CHRISTODOULOU, D ;
TAHVILDARZADEH, AS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (07) :1041-1091
[4]   THE CAUCHY-PROBLEM FOR THE KORTEWEG-DEVRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDEXES [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :1-21
[5]  
Klainerman S, 1997, COMMUN PART DIFF EQ, V22, P901
[6]   On the optimal local regularity for the Yang-Mills equations in R4+1 [J].
Klainerman, S ;
Tataru, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :93-116
[7]  
Klainerman S., 1996, INT MATH RES NOTICES, V1996, P853
[8]  
KLAINERMAN S, 1996, INT MATH RES NOTICES, V5, P201, DOI DOI 10.1155/S1073792896000153.MR1383755
[10]   GLOBAL EXISTENCE OF HARMONIC MAPS IN MINKOWSKI SPACE [J].
SIDERIS, TC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (01) :1-13