MODEL AND PREDICT AGE AND SEX IN HEALTHY SUBJECTS USING BRAIN WHITE MATTER FEATURES: A DEEP LEARNING APPROACH

被引:10
作者
He, Hao [1 ,2 ]
Zhang, Fan [2 ]
Pieper, Steve [2 ]
Makris, Nikos [2 ]
Rathi, Yogesh [2 ]
Wells, William I. I. I. I. I. I. [2 ]
O'Donnell, Lauren J. [2 ]
机构
[1] Univ Elect Sci & Technol China, Glasgow Coll, Chengdu, Peoples R China
[2] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
dMRI; connectome; sex prediction; age prediction; deep learning; STRUCTURAL CONNECTOME; DIFFUSION;
D O I
10.1109/ISBI52829.2022.9761684
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The human brain's white matter (WM) structure is of immense interest to the scientific community. Diffusion MRI gives a powerful tool to describe the brainWMstructure noninvasively. To potentially enable monitoring of age-related changes and investigation of sex-related brain structure differences on the mapping between the brain connectome and healthy subjects' age and sex, we extract fiber-cluster-based diffusion features and predict sex and age with a novel ensembled neural network classifier. We conduct experiments on the Human Connectome Project (HCP) young adult dataset and show that our model achieves 94.82% accuracy in sex prediction and 2.51 years MAE in age prediction. We also show that the fractional anisotropy (FA) is the most predictive of sex, while the number of fibers is the most predictive of age and the combination of different features can improve the model performance.
引用
收藏
页数:5
相关论文
共 22 条
[1]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[2]  
2-O
[3]   Altered cerebellar feedback projections in Asperger syndrome [J].
Catani, Marco ;
Jones, Derek K. ;
Daly, Eileen ;
Embiricos, Nitzia ;
Deeley, Quinton ;
Pugliese, Luca ;
Curran, Sarah ;
Robertson, Dene ;
Murphy, Declan G. M. .
NEUROIMAGE, 2008, 41 (04) :1184-1191
[4]  
Friedman J., 2001, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, V1, DOI [DOI 10.1007/978-0-387-21606-53, DOI 10.1007/978]
[5]  
H C P WU-Minn, 2017, 1200 SUBJECTS DATA R
[6]   Sex differences in the structural connectome of the human brain [J].
Ingalhalikar, Madhura ;
Smith, Alex ;
Parker, Drew ;
Satterthwaite, Theodore D. ;
Elliott, Mark A. ;
Ruparel, Kosha ;
Hakonarson, Hakon ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Verma, Ragini .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (02) :823-828
[7]  
Kulkarni V, 2013, LECT NOTES ARTIF INT, V8211, P82, DOI 10.1007/978-3-319-02753-1_9
[8]   Diffusion tensor imaging of white matter tract evolution over the lifespan [J].
Lebel, C. ;
Gee, M. ;
Camicioli, R. ;
Wieler, M. ;
Martin, W. ;
Beaulieu, C. .
NEUROIMAGE, 2012, 60 (01) :340-352
[9]   Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: A machine learning approach [J].
Mwangi, Benson ;
Hasan, Khader M. ;
Soares, Jair C. .
NEUROIMAGE, 2013, 75 :58-67
[10]   SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research [J].
Norton, Isaiah ;
Ibn Essayed, Walid ;
Zhang, Fan ;
Pujol, Sonia ;
Yarmarkovich, Alex ;
Golby, Alexandra J. ;
Kindlmann, Gordon ;
Wasserman, Demian ;
Estepar, Raul San Jose ;
Rathi, Yogesh ;
Pieper, Steve ;
Kikinis, Ron ;
Johnson, Hans J. ;
Westin, Carl-Fredrik ;
O'Donnell, Lauren J. .
CANCER RESEARCH, 2017, 77 (21) :E101-E103