An FFT-based Solution Method for the Poisson Equation on 3D Spherical Polar Grids

被引:4
作者
Mueller, Bernhard [1 ]
Chan, Conrad [1 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
gravitation; methods: numerical; DRIVEN SUPERNOVA EXPLOSIONS; CORE-COLLAPSE; DYNAMICS; MODELS; CODE; 2D;
D O I
10.3847/1538-4357/aaf100
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solution of the Poisson equation is a ubiquitous problem in computational astrophysics. Most notably, the treatment of self-gravitating flows involves the Poisson equation for the gravitational field. In hydrodynamics codes using spherical polar grids, one often resorts to a truncated spherical harmonics expansion for an approximate solution. Here we present a non-iterative method that is similar in spirit, but uses the full set of eigenfunctions of the discretized Laplacian to obtain an exact solution of the discretized Poisson equation. This allows the solver to handle density distributions for which the truncated multipole expansion fails, such as off-center point masses. In 3D, the operation count of the new method is competitive with a naive implementation of the truncated spherical harmonics expansion with N-l approximate to 15 multipoles. We also discuss the parallel implementation of the algorithm. The serial code and a template for the parallel solver are made publicly available.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Parallelized Solution Method of the Three-dimensional Gravitational Potential on the Yin-Yang Grid [J].
Almanstoetter, Marius ;
Melson, Tobias ;
Janka, Hans-Thomas ;
Mueller, Ewald .
ASTROPHYSICAL JOURNAL, 2018, 863 (02)
[2]  
[Anonymous], 1999, LAPACK users' guide third
[3]  
[Anonymous], 1997, Scalapack Users Guide
[4]  
[Anonymous], 1999, FUNDAMENTALS ATMOSPH
[5]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[7]   An updated set of Basic Linear Algebra Subprograms (BLAS) [J].
Blackford, LS ;
Demmel, J ;
Dongarra, J ;
Duff, I ;
Hammarling, S ;
Henry, G ;
Heroux, M ;
Kaufman, L ;
Lumsdaine, A ;
Petitet, A ;
Pozo, R ;
Remington, K ;
Whaley, RC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :135-151
[8]   THE EFFECT OF NONZERO-DEL.B ON THE NUMERICAL-SOLUTION OF THE MAGNETO-HYDRODYNAMIC EQUATIONS [J].
BRACKBILL, JU ;
BARNES, DC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (03) :426-430
[9]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[10]   AXISYMMETRIC AB INITIO CORE-COLLAPSE SUPERNOVA SIMULATIONS OF 12-25 M⊙ STARS [J].
Bruenn, Stephen W. ;
Mezzacappa, Anthony ;
Hix, W. Raphael ;
Lentz, Eric J. ;
Messer, O. E. Bronson ;
Lingerfelt, Eric J. ;
Blondin, John M. ;
Endeve, Eirik ;
Marronetti, Pedro ;
Yakunin, Konstantin N. .
ASTROPHYSICAL JOURNAL LETTERS, 2013, 767 (01)