Proteomic Approaches to Defining Remission and the Risk of Relapse in Rheumatoid Arthritis

被引:7
作者
O'Neil, Liam J. [1 ,2 ,3 ]
Hu, Pingzhao [4 ,5 ]
Liu, Qian [4 ,5 ]
Islam, Md. Mohaiminul [4 ,5 ]
Spicer, Victor [2 ,3 ]
Rech, Juergen [6 ,7 ]
Hueber, Axel [6 ,7 ]
Anaparti, Vidyanand [2 ,3 ]
Smolik, Irene [1 ]
El-Gabalawy, Hani S. [1 ,2 ,3 ]
Schett, Georg [6 ,7 ]
Wilkins, John A. [1 ,2 ,3 ]
机构
[1] Univ Manitoba, Dept Internal Med, Sect Rheumatol, Winnipeg, MB, Canada
[2] Univ Manitoba, Manitoba Ctr Prote & Syst Biol, Winnipeg, MB, Canada
[3] Hlth Sci Ctr, Winnipeg, MB, Canada
[4] Univ Manitoba, Dept Biochem & Med Genet, Winnipeg, MB, Canada
[5] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[6] Friedrich Alexander Univ Erlangen Nuernberg, Dept Med, Erlangen, Germany
[7] Univ Klinikum Erlangen, Erlangen, Germany
来源
FRONTIERS IN IMMUNOLOGY | 2021年 / 12卷
基金
加拿大创新基金会;
关键词
rheumatoid arthritis; disease activity; outcomes research; treatment; proteomics; RHEUMATOLOGY/EUROPEAN LEAGUE; AMERICAN-COLLEGE; PROVISIONAL DEFINITION; DISEASE-ACTIVITY; WITHDRAWAL; METHOTREXATE; ETANERCEPT; REDUCTION;
D O I
10.3389/fimmu.2021.729681
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
ObjectivesPatients with Rheumatoid Arthritis (RA) are increasingly achieving stable disease remission, yet the mechanisms that govern ongoing clinical disease and subsequent risk of future flare are not well understood. We sought to identify serum proteomic alterations that dictate clinically important features of stable RA, and couple broad-based proteomics with machine learning to predict future flare. MethodsWe studied baseline serum samples from a cohort of stable RA patients (RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins using the SOMAscan platform. Unsupervised hierarchical clustering and supervised classification were applied to identify proteomic-driven clusters and model biomarkers that were associated with future disease flare after 12 months of follow-up and RA medication withdrawal. Network analysis was used to define pathways that were enriched in proteomic datasets. ResultsWe defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses and complement activation. Clustering did not clearly predict future risk of flare, however an XGboost machine learning algorithm classified patients who relapsed with an AUC (area under the receiver operating characteristic curve) of 0.80 using only baseline serum proteomics. ConclusionsThe serum proteome provides a rich dataset to understand stable RA and its clinical heterogeneity. Combining proteomics and machine learning may enable prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.
引用
收藏
页数:10
相关论文
共 49 条
  • [1] Time trends in disease activity, response and remission rates in rheumatoid arthritis during the past decade: results from the NOR-DMARD study 2000-2010
    Aga, Anna-Birgitte
    Lie, Elisabeth
    Uhlig, Till
    Olsen, Inge Christoffer
    Wierod, Ada
    Kalstad, Synove
    Rodevand, Erik
    Mikkelsen, Knut
    Kvien, Tore K.
    Haavardsholm, Espen A.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2015, 74 (02) : 381 - 388
  • [2] 2010 Rheumatoid Arthritis Classification Criteria An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative
    Aletaha, Daniel
    Neogi, Tuhina
    Silman, Alan J.
    Funovits, Julia
    Felson, David T.
    Bingham, Clifton O., III
    Birnbaum, Neal S.
    Burmester, Gerd R.
    Bykerk, Vivian P.
    Cohen, Marc D.
    Combe, Bernard
    Costenbader, Karen H.
    Dougados, Maxime
    Emery, Paul
    Ferraccioli, Gianfranco
    Hazes, Johanna M. W.
    Hobbs, Kathryn
    Huizinga, Tom W. J.
    Kavanaugh, Arthur
    Kay, Jonathan
    Kvien, Tore K.
    Laing, Timothy
    Mease, Philip
    Menard, Henri A.
    Moreland, Larry W.
    Naden, Raymond L.
    Pincus, Theodore
    Smolen, Josef S.
    Stanislawska-Biernat, Ewa
    Symmons, Deborah
    Tak, Paul P.
    Upchurch, Katherine S.
    Vencovsky, Jiri
    Wolfe, Frederick
    Hawker, Gillian
    [J]. ARTHRITIS AND RHEUMATISM, 2010, 62 (09): : 2569 - 2581
  • [3] Multiple imputation by chained equations: what is it and how does it work?
    Azur, Melissa J.
    Stuart, Elizabeth A.
    Frangakis, Constantine
    Leaf, Philip J.
    [J]. INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2011, 20 (01) : 40 - 49
  • [4] A Neutrophil Activation Biomarker Panel in Prognosis and Monitoring of Patients With Rheumatoid Arthritis
    Bach, Mary
    Moon, Jeonghun
    Moore, Richard
    Pan, Tiffany
    Nelson, J. Lee
    Lood, Christian
    [J]. ARTHRITIS & RHEUMATOLOGY, 2020, 72 (01) : 47 - 56
  • [5] Effectiveness, Complications, and Costs of Rheumatoid Arthritis Treatment with Biologics in Alberta: Experience of Indigenous and Non-indigenous Patients
    Barnabe, Cheryl
    Zheng, Yufei
    Ohinmaa, Arto
    Crane, Louise
    White, Tyler
    Hemmelgarn, Brenda
    Kaplan, Gilaad G.
    Martin, Liam
    Maksymowych, Walter P.
    [J]. JOURNAL OF RHEUMATOLOGY, 2018, 45 (10) : 1344 - 1352
  • [6] Evolution of Clinical Proteomics and its Role in Medicine
    Boja, Emily
    Hiltke, Tara
    Rivers, Robert
    Kinsinger, Christopher
    Rahbar, Amir
    Mesri, Mehdi
    Rodriguez, Henry
    [J]. JOURNAL OF PROTEOME RESEARCH, 2011, 10 (01) : 66 - 84
  • [7] Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier
    Chen, Cheng
    Zhang, Qingmei
    Yu, Bin
    Yu, Zhaomin
    Lawrence, Patrick J.
    Ma, Qin
    Zhang, Yan
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
  • [8] Interleukin 17A and IL-17F Expression and Functional Responses in Rheumatoid Arthritis and Peripheral Spondyloarthritis
    Chen, Sijia
    Blijdorp, Iris C.
    van Mens, Leonieke J. J.
    Bowcutt, Rowann
    Latuhihin, Talia E.
    van de Sande, Marleen G. H.
    Shaw, Stevan
    Yeremenko, Nataliya G.
    Baeten, Dominique L. P.
    [J]. JOURNAL OF RHEUMATOLOGY, 2020, 47 (11) : 1606 - 1613
  • [9] Serum levels of soluble receptor for advanced glycation end products and of S100 proteins are associated with inflammatory, autoantibody, and classical risk markers of joint and vascular damage in rheumatoid arthritis
    Chen, Yueh-Sheng
    Yan, Weixing
    Geczy, Carolyn L.
    Brown, Matthew A.
    Thomas, Ranjeny
    [J]. ARTHRITIS RESEARCH & THERAPY, 2009, 11 (02)
  • [10] Five-year Favorable Outcome of Patients with Early Rheumatoid Arthritis in the 2000s: Data from the ESPOIR Cohort
    Combe, Bernard
    Rincheval, Nathalie
    Benessiano, Joelle
    Berenbaum, Francis
    Cantagrel, Alain
    Daures, Jean-Pierre
    Dougados, Maxime
    Fardellone, Patrice
    Fautrel, Bruno
    Flipo, Rene M.
    Goupille, Philippe
    Guillemin, Francis
    Le Loet, Xavier
    Logeart, Isabelle
    Mariette, Xavier
    Meyer, Olivier
    Ravaud, Philippe
    Saraux, Alain
    Schaeverbeke, Thierry
    Sibilia, Jean
    [J]. JOURNAL OF RHEUMATOLOGY, 2013, 40 (10) : 1650 - 1657