Machine Learning Predicts the X-ray Photoelectron Spectroscopy of the Solid Electrolyte Interface of Lithium Metal Battery

被引:27
作者
Sun, Qintao [1 ]
Xiang, Yan [2 ]
Liu, Yue [1 ]
Xu, Liang [1 ]
Leng, Tianle [3 ]
Ye, Yifan [4 ]
Fortunelli, Alessandro [5 ,6 ]
Goddard, William A., III [3 ]
Cheng, Tao [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, R China, Suzhou 215123, Jiangsu, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[4] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China
[5] CNR, ICCOM, I-00185 Pisa, Italy
[6] CNR, IPCF, I-00185 Pisa, Italy
基金
中国国家自然科学基金;
关键词
INTERPHASE SEI; ANODE; ENERGY; GRAPHENE;
D O I
10.1021/acs.jpclett.2c02222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital details missing. By combining hybrid ab initio and reactive molecular dynamics (HAIR) and machine learning (ML) models, we present an artificial intelligence ab initio (AI-ai) framework to predict the XPS of a SEI. A localized high-concentration electrolyte with a Li metal anode is simulated with a HAIR scheme for similar to 3 ns. Taking the local many-body tensor representation as a descriptor, four ML models are utilized to predict the core level shifts. Overall, extreme gradient boosting exhibits the highest accuracy and lowest variance (with errors <= 0.05 eV). Such an AI-ai model enables the XPS predictions of ten thousand frames with marginal cost.
引用
收藏
页码:8047 / 8054
页数:8
相关论文
共 50 条
  • [41] In situ Observation of Tin Negative Electrode/Electrolyte Interface by X-Ray Reflectivity
    Shimada, Koki
    Kawaguchi, Tomoya
    Ichitsubo, Tetsu
    Matsubara, Eiichiro
    Fukuda, Katsutoshi
    Uchimoto, Yoshiharu
    Ogumi, Zempachi
    INTERFACES AND INTERPHASES IN BATTERY SYSTEMS, 2012, 50 (01): : 31 - 37
  • [42] Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells
    Rahe, Christiane
    Kelly, Stephen T.
    Rad, Mansoureh Nourozi
    Sauer, Dirk Uwe
    Mayer, Joachim
    Figgemeier, Egbert
    JOURNAL OF POWER SOURCES, 2019, 433
  • [43] X-ray photoelectron study of electrical double layer at graphene/phosphoric acid interface
    Sysoev, Vitalii, I
    Okotrub, Alexander, V
    Arkhipov, Vyacheslav E.
    Smirnov, Dmitry A.
    Bulusheva, Lyubov G.
    APPLIED SURFACE SCIENCE, 2020, 515
  • [44] Physical Chemistry of the Mn/ZnO (000(1)over-bar) Interface Probed by Hard X-ray Photoelectron Spectroscopy
    Mugumaoderha, Mac C.
    Sporken, Robert
    Ghijsen, Jacques
    Dumont, Jacques A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42) : 20603 - 20609
  • [45] A novel ionic host solid electrolyte interface formation on reduced graphene oxide of lithium ion battery
    Cheng, Chin-Shu
    Liu, Wei-Ren
    Wang, Fu-Ming
    ELECTROCHIMICA ACTA, 2013, 106 : 425 - 431
  • [46] Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery
    Cheng, Jun
    Hou, Guangmei
    Sun, Qing
    Liang, Zhen
    Xu, Xiaoyan
    Guo, Jianguang
    Dai, Linna
    Li, Deping
    Nie, Xiangkun
    Zeng, Zhen
    Si, Pengchao
    Ci, Lijie
    SOLID STATE IONICS, 2020, 345 (345)
  • [47] In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode
    Chattopadhyay, Sudeshna
    Lipson, Albert L.
    Karmel, Hunter J.
    Emery, Jonathan D.
    Fister, Timothy T.
    Fenter, Paul A.
    Hersam, Mark C.
    Bedzyk, Michael J.
    CHEMISTRY OF MATERIALS, 2012, 24 (15) : 3038 - 3043
  • [48] A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach
    Knudsen, Jan
    Andersen, Jesper N.
    Schnadt, Joachim
    SURFACE SCIENCE, 2016, 646 : 160 - 169
  • [49] X-ray photoelectron spectroscopy study of neodymium niobate and tantalate precursors and thin films
    Brunckova, Helena
    Kolev, Hristo
    Kanuchova, Maria
    SURFACE AND INTERFACE ANALYSIS, 2019, 51 (03) : 326 - 335
  • [50] Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy
    Lichterman, Michael F.
    Hu, Shu
    Richter, Matthias H.
    Crumlin, Ethan J.
    Axnanda, Stephanus
    Favaro, Marco
    Drisdell, Walter
    Hussain, Zahid
    Mayer, Thomas
    Brunschwig, Bruce S.
    Lewis, Nathan S.
    Liu, Zhi
    Lewerenz, Hans-Joachim
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (08) : 2409 - 2416