Machine Learning Predicts the X-ray Photoelectron Spectroscopy of the Solid Electrolyte Interface of Lithium Metal Battery

被引:27
作者
Sun, Qintao [1 ]
Xiang, Yan [2 ]
Liu, Yue [1 ]
Xu, Liang [1 ]
Leng, Tianle [3 ]
Ye, Yifan [4 ]
Fortunelli, Alessandro [5 ,6 ]
Goddard, William A., III [3 ]
Cheng, Tao [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, R China, Suzhou 215123, Jiangsu, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[4] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China
[5] CNR, ICCOM, I-00185 Pisa, Italy
[6] CNR, IPCF, I-00185 Pisa, Italy
基金
中国国家自然科学基金;
关键词
INTERPHASE SEI; ANODE; ENERGY; GRAPHENE;
D O I
10.1021/acs.jpclett.2c02222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital details missing. By combining hybrid ab initio and reactive molecular dynamics (HAIR) and machine learning (ML) models, we present an artificial intelligence ab initio (AI-ai) framework to predict the XPS of a SEI. A localized high-concentration electrolyte with a Li metal anode is simulated with a HAIR scheme for similar to 3 ns. Taking the local many-body tensor representation as a descriptor, four ML models are utilized to predict the core level shifts. Overall, extreme gradient boosting exhibits the highest accuracy and lowest variance (with errors <= 0.05 eV). Such an AI-ai model enables the XPS predictions of ten thousand frames with marginal cost.
引用
收藏
页码:8047 / 8054
页数:8
相关论文
共 50 条
  • [21] Time-resolved x-ray photoelectron spectroscopy at FLASH
    Hellmann, S.
    Sohrt, C.
    Beye, M.
    Rohwer, T.
    Sorgenfrei, F.
    Marczynski-Buehlow, M.
    Kallaene, M.
    Redlin, H.
    Hennies, F.
    Bauer, M.
    Foehlisch, A.
    Kipp, L.
    Wurth, W.
    Rossnagel, K.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [22] Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides
    Mikhlin, Yuri
    Tomashevich, Yevgeny
    Vorobyev, Sergey
    Saikova, Svetlana
    Romanchenko, Alexander
    Felix, Roberto
    APPLIED SURFACE SCIENCE, 2016, 387 : 796 - 804
  • [23] Electrochemically controlled solid liquid interfaces probed with lab-based X-ray photoelectron spectroscopy
    Shalom, Bat-Or
    Andres, Miguel A.
    Yu, Youngseok
    Head, Ashley R.
    Eren, Baran
    ELECTROCHEMISTRY COMMUNICATIONS, 2022, 142
  • [24] Constructing a conductive solid electrolyte interface by adding lithium nitrate into carbonate electrolyte for stable lithium metal anode
    Fei, Jiafeng
    Liu, Honghao
    Wang, Rongjie
    Guan, Mengjia
    Li, Yongsheng
    SOLID STATE IONICS, 2024, 412
  • [25] A novel polymer electrolyte membrane for application in solid state lithium metal battery
    Zewde, Berhanu W.
    Carbone, Lorenzo
    Greenbaum, Steve
    Hassoun, Jusef
    SOLID STATE IONICS, 2018, 317 : 97 - 102
  • [26] A Stable Solid Polymer Electrolyte for Lithium Metal Battery with Electronically Conductive Fillers
    Guo, Xuelin
    Ju, Zhengyu
    Qian, Xitang
    Liu, Yijie
    Xu, Xiao
    Yu, Guihua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (07)
  • [27] Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy
    Blanton, Thomas N.
    Majumdar, Debasis
    POWDER DIFFRACTION, 2013, 28 (02) : 68 - 71
  • [28] Lithium-gel polymer electrolyte composite anode with large electrolyte-lithium interface for solid-state battery
    Zhu, Yuhao
    Han, Yu
    Guo, Qingpeng
    Wang, Hui
    Jiang, Huize
    Jiang, Haolong
    Sun, Weiwei
    Zheng, Chunman
    Xie, Kai
    ELECTROCHIMICA ACTA, 2021, 394
  • [29] Toward the perfect membrane material for environmental x-ray photoelectron spectroscopy
    Leidinger, Paul
    Kraus, Juergen
    Kratky, Tim
    Zeller, Patrick
    Mentes, Tevfik Onur
    Genuzio, Francesca
    Locatelli, Andrea
    Guenther, Sebastian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (23)
  • [30] X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms
    Susi, Toma
    Pichler, Thomas
    Ayala, Paola
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 177 - 192