Traffic Message Channel Prediction Based on Graph Convolutional Network

被引:2
|
作者
Li, Ning [1 ]
Jia, Shuangcheng [1 ]
Li, Qian [1 ]
机构
[1] Mogo Auto Intelligence & Telemat Informat Technol, Beijing 100009, Peoples R China
关键词
Roads; Correlation; Predictive models; Principal component analysis; Convolution; Task analysis; Covariance matrices; Traffic prediction; PCA; LSTM; PST-GCN; GCN; spatio-temporal correlation; FLOW PREDICTION; GAME; GO;
D O I
10.1109/ACCESS.2021.3114691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of big data, large-scale traffic flow forecasting which is a part of smart transportation has become an increasingly important research direction. Accurate and real-time traffic flow prediction is the key and difficult part of the traffic. The complex spatial topological structure and dynamic traffic flow information in urban roads constitute a changeable spatial correlation, and the daily traffic flow cycle and weekly traffic flow cycle constitute a complex time correlation. For the current mainstream model, there are two main limitations: 1. Most of the existing models only focus on time correlation and ignore spatial correlation. 2. Even if the spatial correlation is concerned, the topological relationship between spaces is not fully considered. This paper proposes a new traffic-flow prediction model, which named Principal Spatio-Temporal Graph Convolution Network (PST-GCN) model, which uses a combination of Principal Component Analysis (PCA), Graph Convolution Network (GCN), and Long Short-Term Memory model (LSTM). Specifically, PCA is used to reduce the dimension of data, GCN is used to learn the network topology of urban roads, LSTM is used to capture the time correlation of traffic flow. By comparing the results of different models, the proposed model is better than the current mainstream models.
引用
收藏
页码:135423 / 135431
页数:9
相关论文
共 50 条
  • [21] Prediction of Cellular Network Channel Utilization Based on Graph Convolutional Networks
    Zhu, Rui
    Luo, Xingshuang
    Yao, Jiayi
    Zhu, Xinning
    Zhang, Chunhong
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 1233 - 1238
  • [22] Time-Evolving Graph Convolutional Recurrent Network for Traffic Prediction
    Mai, Weimin
    Chen, Junxin
    Chen, Xiang
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [23] Multi-graph fusion based graph convolutional networks for traffic prediction
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Li, Kuanching
    Zomaya, Albert
    COMPUTER COMMUNICATIONS, 2023, 210 : 194 - 204
  • [24] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [25] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [26] Graph Convolutional Gated Recurrent Unit Network for Traffic Prediction Using Loop Detector Data
    Shoman, Maged
    Aboah, Armstrong
    Daud, Abdulateef
    Adu-Gyamfi, Yaw
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2024, 16 (01N02)
  • [27] Extended Multi-Component Gated Recurrent Graph Convolutional Network for Traffic Flow Prediction
    Zhao, Junhui
    Xiong, Xincheng
    Zhang, Qingmiao
    Wang, Dongming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4634 - 4644
  • [28] STFGCN: Spatial-temporal fusion graph convolutional network for traffic prediction
    Li, Hao
    Liu, Jie
    Han, Shiyuan
    Zhou, Jin
    Zhang, Tong
    Chen, C. L. Philip
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [29] RT-GCN: Gaussian-based spatiotemporal graph convolutional network for robust traffic prediction
    Liu, Yutian
    Rasouli, Soora
    Wong, Melvin
    Feng, Tao
    Huang, Tianjin
    INFORMATION FUSION, 2024, 102
  • [30] Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction
    Xu, Yuanbo
    Cai, Xiao
    Wang, En
    Liu, Wenbin
    Yang, Yongjian
    Yang, Funing
    INFORMATION SCIENCES, 2023, 621 : 580 - 595