Traffic Message Channel Prediction Based on Graph Convolutional Network

被引:2
|
作者
Li, Ning [1 ]
Jia, Shuangcheng [1 ]
Li, Qian [1 ]
机构
[1] Mogo Auto Intelligence & Telemat Informat Technol, Beijing 100009, Peoples R China
关键词
Roads; Correlation; Predictive models; Principal component analysis; Convolution; Task analysis; Covariance matrices; Traffic prediction; PCA; LSTM; PST-GCN; GCN; spatio-temporal correlation; FLOW PREDICTION; GAME; GO;
D O I
10.1109/ACCESS.2021.3114691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of big data, large-scale traffic flow forecasting which is a part of smart transportation has become an increasingly important research direction. Accurate and real-time traffic flow prediction is the key and difficult part of the traffic. The complex spatial topological structure and dynamic traffic flow information in urban roads constitute a changeable spatial correlation, and the daily traffic flow cycle and weekly traffic flow cycle constitute a complex time correlation. For the current mainstream model, there are two main limitations: 1. Most of the existing models only focus on time correlation and ignore spatial correlation. 2. Even if the spatial correlation is concerned, the topological relationship between spaces is not fully considered. This paper proposes a new traffic-flow prediction model, which named Principal Spatio-Temporal Graph Convolution Network (PST-GCN) model, which uses a combination of Principal Component Analysis (PCA), Graph Convolution Network (GCN), and Long Short-Term Memory model (LSTM). Specifically, PCA is used to reduce the dimension of data, GCN is used to learn the network topology of urban roads, LSTM is used to capture the time correlation of traffic flow. By comparing the results of different models, the proposed model is better than the current mainstream models.
引用
收藏
页码:135423 / 135431
页数:9
相关论文
共 50 条
  • [1] T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction
    Zhao, Ling
    Song, Yujiao
    Zhang, Chao
    Liu, Yu
    Wang, Pu
    Lin, Tao
    Deng, Min
    Li, Haifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) : 3848 - 3858
  • [2] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [3] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [4] Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Yao, Zhixiu
    Xia, Shichao
    Li, Yun
    Wu, Guangfu
    Zuo, Linli
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8592 - 8605
  • [5] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 8705 - 8718
  • [6] Traffic Speed Prediction Based on Time Classification in Combination With Spatial Graph Convolutional Network
    Pan, Xiuqin
    Hou, Fei
    Li, Sumin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8799 - 8808
  • [7] Graph-Based Dynamic Modeling and Traffic Prediction of Urban Road Network
    Liu, Tao
    Jiang, Aimin
    Miao, Xiaoyu
    Tang, Yibin
    Zhu, Yanping
    Kwan, Hon Keung
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 28118 - 28130
  • [8] Multi-View SpatialTemporal Graph Convolutional Network for Traffic Prediction
    Wei, Shuqing
    Feng, Siyuan
    Yang, Hai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 9572 - 9586
  • [9] ADGCN: An Asynchronous Dilation Graph Convolutional Network for Traffic Flow Prediction
    Qi, Tao
    Li, Guanghui
    Chen, Lingqiang
    Xue, Yanming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05) : 4001 - 4014
  • [10] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348