Disruption of the Chitin Biosynthetic Pathway Results in Significant Changes in the Cell Growth Phenotypes and Biosynthesis of Secondary Metabolites of Monascus purpureus

被引:15
|
作者
Shu, Meng [1 ]
Lu, Pengxin [1 ]
Liu, Shuai [1 ]
Zhang, Song [1 ]
Gong, Zihan [1 ]
Cai, Xinru [1 ]
Zhou, Bo [1 ]
Lin, Qinlu [1 ]
Liu, Jun [1 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Food Sci & Engn, Natl Engn Res Ctr Rice & Byprod Deep Proc, Hunan Key Lab Grain Oil Deep Proc & Qual Control, Changsha 410004, Peoples R China
基金
中国国家自然科学基金;
关键词
Monascus purpureus; chitin synthase; morphology; stress tolerance; secondary metabolite; NATURAL YELLOW PIGMENTS; GLOBAL REGULATOR LAEA; BOTRYTIS-CINEREA; MORPHOLOGY; FERMENTATION; PRODUCTIVITY; CULTURE; RED;
D O I
10.3390/jof8090910
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In this study, the gene monascus-5162 from Monascus purpureus LQ-6, identified as chitin synthase gene VI (chs6), was knocked out to disrupt the chitin biosynthetic pathway and regulate the biosynthesis of Monascus pigments (MPs) and citrinin. The results showed that the aerial hyphae on a solid medium were short and sparse after the deletion of chs6 in M. purpureus LQ-6, significantly reducing the germination percentage of active spores to approximately 22%, but the colony diameter was almost unaffected. Additionally, the deletion of chs6 changed the mycelial morphology of M. purpureus LQ-6 during submerged fermentation and increased its sensitivity to environmental factors. MP and citrinin biosynthesis was dramatically inhibited in the recombinant strain. Furthermore, comparative transcriptome analysis revealed that the pathways related to spore development and growth, including the MAPK signaling pathway, chitin biosynthetic pathway, and regulatory factors LaeA and WetA genes, were significantly downregulated in the early phase of fermentation. The mRNA expression levels of genes in the cluster of secondary metabolites were significantly downregulated, especially those related to citrinin biosynthesis. This is the first detailed study to reveal that chs6 plays a vital role in regulating the cell growth and secondary metabolism of the Monascus genus.
引用
收藏
页数:18
相关论文
共 1 条
  • [1] Role of the Gene ndufs8 Located in Respiratory Complex I from Monascus purpureus in the Cell Growth and Secondary Metabolites Biosynthesis
    Cai, Xinru
    Zhang, Song
    Lin, Jia
    Wang, Yaxu
    Ye, Fanyu
    Zhou, Bo
    Lin, Qinlu
    Liu, Jun
    JOURNAL OF FUNGI, 2022, 8 (07)