A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications

被引:50
作者
Gadaleta, Domenico [1 ]
Lombardo, Anna [1 ]
Toma, Cosimo [1 ]
Benfenati, Emilio [1 ]
机构
[1] IRCCS, Ist Ric Farmacol Mario Negri, Dept Environm Hlth Sci, Lab Environm Chem & Toxicol, Via Masa 19, I-20156 Milan, Italy
来源
JOURNAL OF CHEMINFORMATICS | 2018年 / 10卷
关键词
QSAR; Data curation; Data cleaning; Semi-automated; Workflow; CURATION;
D O I
10.1186/s13321-018-0315-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quality of data used for QSAR model derivation is extremely important as it strongly affects the final robustness and predictive power of the model. Ambiguous or wrong structures need to be carefully checked, because they lead to errors in calculation of descriptors, hence leading to meaningless results. The increasing amounts of data, however, have often made it hard to check of very large databases manually. In the light of this, we designed and implemented a semi-automated workflow integrating structural data retrieval from several web-based databases, automated comparison of these data, chemical structure cleaning, selection and standardization of data into a consistent, ready-to-use format that can be employed for modeling. The workflow integrates best practices for data curation that have been suggested in the recent literature. The workflow has been implemented with the freely available KNIME software and is freely available to the cheminformatics community for improvement and application to a broad range of chemical datasets.
引用
收藏
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 2016, OPENBABEL OPENSOURCE
[2]  
[Anonymous], 2018, MOL OP ENV MOE
[3]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[4]  
ChemAxon, 2018, J CHEM
[5]  
Chemical Abstract Service (CAS), 2018, CHECK DIG VER CAS RE
[6]  
ChemSec, 2018, SIN LIST
[7]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010
[8]   How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR) [J].
Dearden, J. C. ;
Cronin, M. T. D. ;
Kaiser, K. L. E. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2009, 20 (3-4) :241-266
[9]  
European Molecular Biology LaboratoryEuropean Bioinformatic Institue (EMBL-EBI), 2018, CHEMBL DAT
[10]   Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research [J].
Fourches, Denis ;
Muratov, Eugene ;
Tropsha, Alexander .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (07) :1189-1204