Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces

被引:12
作者
Belli, E. A. [1 ]
Candy, J. [1 ]
机构
[1] Gen Atom, San Diego, CA 92186 USA
关键词
neoclassical transport; toroidal plasmas; nonaxisymmetric; drift-kinetic; COEFFICIENTS; EQUATION;
D O I
10.1088/0741-3335/57/5/054012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010). Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch-Schlter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. Finally, we compute the transport in the presence of ripple-type perturbations in a DIII-D-like H-mode edge plasma.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Momentum correction techniques for neoclassical transport in stellarators
    Maassberg, H.
    Beidler, C. D.
    Turkin, Y.
    PHYSICS OF PLASMAS, 2009, 16 (07)
  • [32] Analytical methods to calculate flows and diffusions driven by neoclassical viscosities in helical plasmas
    Nishimura, Shin
    Sugama, Hideo
    Nakamura, Yuji
    FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (01) : 61 - 78
  • [33] Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations
    Satake, S.
    Idomura, Y.
    Sugama, H.
    Watanabe, T-H.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (06) : 1069 - 1076
  • [34] MICROINSTABILITIES, TURBULENT TRANSPORT, AND STRUCTURE FORMATION IN HELICAL PLASMAS
    Itoh, K.
    Sugama, H.
    Watanabe, T. -H.
    Yamagishi, O.
    Toda, S.
    Kasuya, N.
    Kanno, R.
    Nunami, M.
    FUSION SCIENCE AND TECHNOLOGY, 2010, 58 (01) : 256 - 268
  • [35] Isotope and density profile effects on pedestal neoclassical transport
    Buller, S.
    Pusztai, I.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (10)
  • [36] Neoclassical transport modeling compatible with a two-fluid transport equation system
    Honda M.
    Fukuyama A.
    Nakajima N.
    Plasma and Fusion Research, 2011, 6 (2011)
  • [37] Direct optimization of neoclassical ion transport in stellarator reactors
    Lee, B. F.
    Lazerson, S. A.
    Smith, H. M.
    Beidler, C. D.
    Pablant, N. A.
    NUCLEAR FUSION, 2024, 64 (10)
  • [38] Transport equations in tokamak plasmas
    Callen, J. D.
    Hegna, C. C.
    Cole, A. J.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [39] Neoclassical Transport and Iota Scaling in the TJ-II Stellarator
    Castejon, F.
    Rubio-Montero, A. J.
    Lopez-Fraguas, A.
    Ascasibar, E.
    Mayo-Garcia, R.
    FUSION SCIENCE AND TECHNOLOGY, 2016, 70 (03) : 406 - 416
  • [40] Synergy of turbulent and neoclassical transport through poloidal convective cells
    Asahi, Yuuichi
    Grandgirard, Virginie
    Sarazin, Yanick
    Donnel, Peter
    Garbet, Xavier
    Idomura, Yasuhiro
    Dif-Pradalier, Guilhem
    Latu, Guillaume
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (06)