EFFERVESCENT ATOMIZATION FOR INDUSTRIAL ENERGY-TECHNOLOGY REVIEW

被引:64
作者
Konstantinov, Dancho [1 ]
Marsh, Richard [1 ]
Bowen, Phil [1 ]
Crayford, Andrew [1 ]
机构
[1] Cardiff Univ, Sch Engn, Cardiff, S Glam, Wales
关键词
effervescent atomization; fuel injection; alternative fuels; combustion; industrial energy; technology review; MULTIPOINT STATISTICAL STRUCTURE; BUBBLE FORMATION; IDEAL SPRAY; FLOW; PERFORMANCE; PRESSURE; VISCOSITY; VELOCITY; LIQUIDS; DESIGN;
D O I
10.1615/AtomizSpr.v20.i6.40
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effervescent atomization technology is a process employing the creation of a two-phase flow between a liquid fuel and an aerating gas. This technology is receiving renewed interest in the industrial energy field due to its applicability to alternative fuels. This paper presents a review of the principal governing parameters controlling the atomization characteristics of effervescent systems. Previous research in this field has developed a number of systematic parameters relating to the operation of effervescent atomizers but none are universally applicable, i.e., a thorough first-principles-based understanding of effervescent atomization has not yet been achieved. This paper reviews initial operating conditions (gas-to-liquid ratio, pressure drop), fluid properties (liquid viscosity, liquid surface tension, fuel type, atomizing gas molecular weight, non-Newtonian fluids), and geometric constraints (atomizer geometry, exit orifice geometry). There is considerable agreement among researchers with regard to most of these parameters. By contrast, geometric constraints have not been satisfactorily optimized. Recommendations based on experimental work do exist for most geometric constraints. These could, however, almost certainly be further optimized. Also included in this work is a thorough review of the experimental correlations required to develop effervescent atomization systems, including resultant spray characteristics, injector internal flow, and bubble energy.
引用
收藏
页码:525 / 552
页数:28
相关论文
共 60 条
[1]   Effervescent atomization under sub-sonic and choked conditions - A theoretical approach [J].
Bar-Kohany, T ;
Sher, E .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5987-5995
[2]  
Bar-Kohany T, 2004, ATOMIZATION SPRAY, V14, P495
[3]  
BARKOHANY T, 2002, 18 ICLASS C 9 11 SEP
[4]  
BATES CJ, 2000, P 18 INT C LIQ AT SP
[5]  
Buckner H.N., 1990, ASME Publ/, VPD-30, P105
[6]  
Buckner H.N., 1991, ATOMIZATION SPRAY, V1, P239
[7]  
Buckner HarryN., 1993, Atomization and Sprays, V3, P157
[8]  
Butterworth D., 1977, Two-Phase Flow and Heat Transfer
[9]  
Catlin CA, 2001, ATOMIZATION SPRAY, V11, P575
[10]  
CHAWLA JB, 1985, AT LIQ EMPL LOW SON