Equivariant Ehrhart theory

被引:11
|
作者
Stapledon, Alan [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Lattice polytopes; Toric varieties; Group actions on varieties; COHOMOLOGY; CLASSIFICATION; FORMULA; POINTS;
D O I
10.1016/j.aim.2010.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by representation theory and geometry, we introduce and develop an equivariant generalization of Ehrhart theory, the study of lattice points in dilations of lattice polytopes. We prove representation-theoretic analogues of numerous classical results, and give applications to the Ehrhart theory of rational polytopes and centrally symmetric polytopes. We also recover a character formula of Procesi, Dolgachev, Lunts and Stembridge for the action of a Weyl group on the cohomology of a tone variety associated to a root system. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3622 / 3654
页数:33
相关论文
共 50 条
  • [1] THE EQUIVARIANT EHRHART THEORY OF THE PERMUTAHEDRON
    Ardila, Federico
    Supina, Mariel
    Vindas-Melendez, Andres R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (12) : 5091 - 5107
  • [2] Discrete Equidecomposability and Ehrhart Theory of Polygons
    Paxton Turner
    Yuhuai Wu
    Discrete & Computational Geometry, 2021, 65 : 90 - 115
  • [3] Discrete Equidecomposability and Ehrhart Theory of Polygons
    Turner, Paxton
    Wu, Yuhuai
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (01) : 90 - 115
  • [4] Ehrhart Theory of Spanning Lattice Polytopes
    Hofscheier, Johannes
    Katthaen, Lukas
    Nill, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (19) : 5947 - 5973
  • [5] From Hodge Theory for Tame Functions to Ehrhart Theory for Polytopes
    Douai, Antoine
    ANNALS OF COMBINATORICS, 2024,
  • [6] COMBINATORICS AND GENUS OF TROPICAL INTERSECTIONS AND EHRHART THEORY
    Steffens, Reinhard
    Theobald, Thorsten
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 17 - 32
  • [7] HARD LEFSCHETZ PROPERTIES AND DISTRIBUTION OF SPECTRA IN SINGULARITY THEORY AND EHRHART THEORY
    Douai, Antoine
    JOURNAL OF SINGULARITIES, 2021, 23 : 116 - 126
  • [8] Weighted Ehrhart theory: Extending Stanley's nonnegativity theorem
    Bajo, Esme
    Davis, Robert
    De Loera, Jesus A.
    Garber, Alexey
    Mora, Sofia Garzon
    Jochemko, Katharina
    Yu, Josephine
    ADVANCES IN MATHEMATICS, 2024, 444
  • [9] Equivariant formality in K-theory
    Fok, Chi-Kwong
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 315 - 327
  • [10] EQUIVARIANT K-THEORY OF GRASSMANNIANS
    Pechenik, Oliver
    Yong, Alexander
    FORUM OF MATHEMATICS PI, 2017, 5