Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control

被引:46
|
作者
Chen, Wei-Han [1 ]
You, Fengqi [2 ,3 ]
机构
[1] Cornell Univ, Coll Engn, Syst Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Syst Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Controlled environment agriculture; data-driven robust optimization; greenhouse climate control; robust model predictive control (RMPC); uncertainty; CO2; CONCENTRATION; DECISION-MAKING; OPTIMIZATION; TEMPERATURE; ENERGY; ALGORITHM; FRAMEWORK; SUPPORT; TOMATO; GROWTH;
D O I
10.1109/TCST.2021.3094999
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework integrates dynamic control models of greenhouse temperature, humidity, and CO2 concentration level with data-driven robust optimization models that accurately and rigorously capture uncertainty in weather forecast error. Data-driven uncertainty sets for ambient temperature, solar radiation, and humidity are constructed from historical data by leveraging a machine learning approach, namely, support vector clustering with weighted generalized intersection kernel. A training-calibration procedure that tunes the size of uncertainty sets is implemented to ensure that data-driven uncertainty sets attain an appropriate performance guarantee. In order to solve the optimization problem in DDRMPC, an affine disturbance feedback policy is utilized to obtain tractable approximations of optimal control. A case study of controlling temperature, humidity, and CO2 concentration of a semiclosed greenhouse in New York City is presented. The results show that the DDRMPC approach ends up with 14% and 4% lower total cost than rule-based control and robust model predictive control with L-1-norm-based uncertainty set, respectively. The constraint violation probability, which is the percentage of time that the greenhouse system states violate the constraint throughout the whole growing period, for DDRMPC is only 0.39%. Hence, the proposed DDRMPC framework can prevent the greenhouse climate from becoming harmful to plants and fruits. In conclusion, the proposed DDRMPC approach can improve the greenhouse climate control performance and reduce cost compared with other control strategies.
引用
收藏
页码:1186 / 1197
页数:12
相关论文
共 50 条
  • [41] Data-driven model predictive control for building climate control: Three case studies on different buildings
    Wang, Jiangyu
    Li, Shuai
    Chen, Huanxin
    Yuan, Yue
    Huang, Yao
    BUILDING AND ENVIRONMENT, 2019, 160
  • [42] A robust data-driven model predictive thermal control for rack-based data center
    Li, Yiran
    Yang, Chao
    Xia, Yuanqing
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [43] DATA-DRIVEN INDIRECT ADAPTIVE MODEL PREDICTIVE CONTROL
    Wahab, Norhaliza
    Katebi, Mohamed Reza
    Rahmat, Mohd Fua'ad
    Bunyamin, Salinda
    JURNAL TEKNOLOGI, 2011, 54
  • [44] Automatic Tuning for Data-driven Model Predictive Control
    Edwards, William
    Tang, Gao
    Mamakoukas, Giorgos
    Murphey, Todd
    Hauser, Kris
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 7379 - 7385
  • [45] Iterative Learning Model Predictive Control Based on Iterative Data-Driven Modeling
    Ma, Lele
    Liu, Xiangjie
    Kong, Xiaobing
    Lee, Kwang Y.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3377 - 3390
  • [46] Data-driven Iterative Learning Model Predictive Control for Pneumatic Muscle Actuators
    Xie, Shenglong
    Liu, Wenyuan
    Bian, Shiyuan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (08) : 2613 - 2623
  • [47] Data-Driven Distributed and Localized Model Predictive Control
    Alonso, Carmen Amo
    Yang, Fengjun
    Matni, Nikolai
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2022, 1 : 29 - 40
  • [48] Model-free Data-driven Predictive Control Using Reinforcement Learning
    Sawant, Shambhuraj
    Reinhardt, Dirk
    Kordabad, Arash Bahari
    Gros, Sebastien
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4046 - 4052
  • [49] Data-driven distributionally robust iterative risk-constrained model predictive control
    Zolanvari, Alireza
    Cherukuri, Ashish
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1578 - 1583
  • [50] Recursively Feasible Data-Driven Distributionally Robust Model Predictive Control With Additive Disturbances
    Mark, Christoph
    Liu, Steven
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 526 - 531