Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control

被引:46
|
作者
Chen, Wei-Han [1 ]
You, Fengqi [2 ,3 ]
机构
[1] Cornell Univ, Coll Engn, Syst Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Syst Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Controlled environment agriculture; data-driven robust optimization; greenhouse climate control; robust model predictive control (RMPC); uncertainty; CO2; CONCENTRATION; DECISION-MAKING; OPTIMIZATION; TEMPERATURE; ENERGY; ALGORITHM; FRAMEWORK; SUPPORT; TOMATO; GROWTH;
D O I
10.1109/TCST.2021.3094999
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic control of greenhouse in-door climate. The framework integrates dynamic control models of greenhouse temperature, humidity, and CO2 concentration level with data-driven robust optimization models that accurately and rigorously capture uncertainty in weather forecast error. Data-driven uncertainty sets for ambient temperature, solar radiation, and humidity are constructed from historical data by leveraging a machine learning approach, namely, support vector clustering with weighted generalized intersection kernel. A training-calibration procedure that tunes the size of uncertainty sets is implemented to ensure that data-driven uncertainty sets attain an appropriate performance guarantee. In order to solve the optimization problem in DDRMPC, an affine disturbance feedback policy is utilized to obtain tractable approximations of optimal control. A case study of controlling temperature, humidity, and CO2 concentration of a semiclosed greenhouse in New York City is presented. The results show that the DDRMPC approach ends up with 14% and 4% lower total cost than rule-based control and robust model predictive control with L-1-norm-based uncertainty set, respectively. The constraint violation probability, which is the percentage of time that the greenhouse system states violate the constraint throughout the whole growing period, for DDRMPC is only 0.39%. Hence, the proposed DDRMPC framework can prevent the greenhouse climate from becoming harmful to plants and fruits. In conclusion, the proposed DDRMPC approach can improve the greenhouse climate control performance and reduce cost compared with other control strategies.
引用
收藏
页码:1186 / 1197
页数:12
相关论文
共 50 条
  • [31] Identification for control approach to data-driven model predictive control
    Zakeri, Yadollah
    Sheikholeslam, Farid
    Haeri, Mohammad
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2024, 18 (03) : 281 - 301
  • [32] Machine learning enabled uncertainty set for data-driven robust optimization
    Li, Yun
    Yorke-Smith, Neil
    Keviczky, Tamas
    Journal of Process Control, 2024, 144
  • [33] Learning Based Stochastic Data-Driven Predictive Control
    Hiremath, Sandesh Athni
    Mishra, Vikas Kumar
    Bajcinca, Naim
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1684 - 1691
  • [34] Data-driven Adaptive Iterative Learning Predictive Control
    Lv, Yunkai
    Chi, Ronghu
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 374 - 377
  • [35] Data-Based Robust Model Predictive Control Under Conditional Uncertainty
    Shang, Chao
    Chen, Wei-Han
    You, Fengqi
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1375 - 1380
  • [36] Robust data-driven predictive control using reachability analysis
    Alanwar, Amr
    Stuerz, Yvonne
    Johansson, Karl Henrik
    EUROPEAN JOURNAL OF CONTROL, 2022, 68
  • [37] Data-Driven Robust Control Using Reinforcement Learning
    Ngo, Phuong D.
    Tejedor, Miguel
    Godtliebsen, Fred
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [38] Data-driven model predictive control using random forests for building energy optimization and climate control
    Smarra, Francesco
    Jain, Achin
    de Rubeis, Tullio
    Ambrosini, Dario
    D'Innocenzo, Alessandro
    Mangharam, Rahul
    APPLIED ENERGY, 2018, 226 : 1252 - 1272
  • [39] ROBUST FEEDBACK ACTIVE NOISE CONTROL IN HEADPHONES BASED ON A DATA-DRIVEN UNCERTAINTY MODEL
    Hilgemann, Florian
    Jax, Peter
    2022 INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC 2022), 2022,
  • [40] Reinforcement learning-based model predictive control for greenhouse climate control
    Mallick, Samuel
    Airaldi, Filippo
    Dabiri, Azita
    Sun, Congcong
    De Schutter, Bart
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10