Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice

被引:69
|
作者
Chen, Zong [1 ]
Ding, Tao [1 ]
Ma, Chuan-Gen [1 ]
机构
[1] Henan Univ, Huaihe Hosp, Dept Anesthesiol, Kaifeng 475000, Peoples R China
关键词
Hepatic ischemialreperfusion (I/R) injury; NLRC5; Dexmedetomidine; Inflammation; Oxidative stress; NF-KAPPA-B; ISCHEMIA-REPERFUSION INJURY; TRANSCRIPTIONAL REGULATOR; STELLATE CELLS; ACTIVATION; PRETREATMENT; RESPONSES; PATHWAYS;
D O I
10.1016/j.bbrc.2017.08.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hepatic ischemia/reperfusion (I/R) injury could arise as a complication of liver surgery and transplantation. No specific therapeutic strategies are available to attenuate I/R injury. NOD-, LRR-and CARD containing 5 (NLRC5), a member of the NOD-like protein family, has been suggested to negatively regulate nuclear factor kappa B (NF-kappa B) through interacting with IKKa and blocking their phosphorylation. Dexmedetomidine (DEX) has been shown to attenuate liver injury. In the current study, we investigated the pre-treatment of DEX on hepatic I/R injury in wild type (WT) and NLRC5 knockout (NLRC5(-/-)) mice. Our results indicated that NLRC5(-/-) showed significantly stronger histologic damage, inflammatory response, oxidative stress and apoptosis after I/12 compared to the WT group of mice, indicating the protective role of NLRC5 against liver I/R injury. Importantly, I/R-induced increase of NLRC5 was reduced by DEX pre-treatment. After hepatic I/12 injury, WT and NLRC5(-/-) mice pre-treated with DEX exhibited attenuated histological disruption, and reduced pro-inflammatory mediators, including tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-1 beta and inducible nitric oxide synthase (iNOS), which was associated with the inactivated NF-kappa B pathway. Moreover, suppression of oxidative stress and apoptosis was observed in DEX-treated mice with I/R injury, probably through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2), reducing mitogen-activated protein kinases (MAPKs) and Caspase-3/poly (ADP-ribose) polymerase (PARP) pathways. In vitro, the results were further confirmed in WT and NLRC5(-/-) hepatocytes pre-treated with or without DEX. Together, the findings illustrated that lack of NLRC5 resulted in severer liver I/R injury, which could be alleviated by DEX pretreatment. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1143 / 1150
页数:8
相关论文
共 50 条
  • [41] Propofol Protects Against Hepatic Ischemia Reperfusion Injury via Inhibiting Bnip3-Mediated Oxidative Stress
    Ma, Hongyan
    Liu, Ying
    Li, Zhengtian
    Yu, Lu
    Gao, Yang
    Ye, Xiangmei
    Yang, Baoyi
    Li, Hulun
    Shi, Jinghui
    INFLAMMATION, 2021, 44 (04) : 1288 - 1301
  • [42] Bracteanolide A abrogates oxidative stress-induced cellular damage and protects against hepatic ischemia and reperfusion injury in rats
    Chao, Ting-Yu
    Hsieh, Cheng-Chu
    Kuo, Yueh-Hsiung
    Yu, Ya-Ju
    Wan, Cho-Hua
    Hsieh, Shu-Chen
    FOOD SCIENCE & NUTRITION, 2021, 9 (09): : 4758 - 4769
  • [43] Pretreatment with rosuvastatin protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress and inflammation
    Ma, Mingjie
    Uekawa, Ken
    Hasegawa, Yu
    Nakagawa, Takashi
    Katayama, Tetsuji
    Sueta, Daisuke
    Toyama, Kensuke
    Kataoka, Keiichiro
    Koibuchi, Nobutaka
    Kuratsu, Jun-ichi
    Kim-Mitsuyama, Shokei
    BRAIN RESEARCH, 2013, 1519 : 87 - 94
  • [44] Shuxuening injection protects against myocardial ischemia-reperfusion injury through reducing oxidative stress, inflammation and thrombosis
    Wang, Ruiying
    Wang, Min
    Zhou, Jiahui
    Ye, Tianyuan
    Xie, Xueheng
    Ni, Dong
    Ye, Jingxue
    Han, Qiaoling
    Di, Caixia
    Guo, Liang
    Sun, Guibo
    Sun, Xiaobo
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (20)
  • [45] ELABELA PROTECTS AGAINST HEPATIC ISCHEMIA/REPERFUSION INJURY AND ALLEVIATES OXIDATIVE DAMAGE IN DISTANT ORGANS
    Ozocak, Aysegul B.
    Sen, Semiha L.
    Ariturk, Leman Arslan
    Yuksel, Meral
    Eyuboglu, Irem Peker
    Erzik, Can
    Ozkececi, Nur
    Ercan, Feriha
    Atici, Ali E.
    Yegen, Berrak C.
    GASTROENTEROLOGY, 2023, 164 (06) : S1354 - S1354
  • [46] Cordycepin Protects Renal Ischemia/Reperfusion Injury Through Regulating Inflammation, Apoptosis and Oxidative Stress
    Ding, C.
    Xue, W.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 : 736 - 736
  • [47] Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress
    Han, Feng
    Dou, Meng
    Wang, Yuxiang
    Xu, Cuixiang
    Li, Yang
    Ding, Xiaoming
    Xue, Wujun
    Zheng, Jin
    Tian, Puxun
    Ding, Chenguang
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2020, 52 (02) : 125 - 132
  • [48] Chrysophanol Liposome Preconditioning Protects against Cerebral Ischemia-reperfusion Injury by Inhibiting Oxidative Stress and Apoptosis in Mice
    Yan, Juan
    Zheng, Maodong
    Zhang, Danshen
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2014, 10 (01) : 55 - 68
  • [49] Effects of Kallistatin on Oxidative Stress and Inflammation on Renal Ischemia-Reperfusion Injury in Mice
    Zhou, Shuqin
    Sun, Yingying
    Zhuang, Yugang
    Zhao, Wei
    Chen, Yuanzhuo
    Jiang, Bojie
    Guo, Changfeng
    Zhang, Zhonglin
    Peng, Hu
    Chen, Yanqing
    CURRENT VASCULAR PHARMACOLOGY, 2015, 13 (02) : 265 - 273
  • [50] The Novel MyD88 Inhibitor TJ-M2010-5 Protects Against Hepatic Ischemia-reperfusion Injury by Suppressing Pyroptosis in Mice
    Zou, Zhimiao
    Shang, Runshi
    Zhou, Liang
    Du, Dunfeng
    Yang, Yang
    Xie, Yalong
    Li, Zeyang
    Zhao, Minghui
    Jiang, Fengchao
    Zhang, Limin
    Zhou, Ping
    TRANSPLANTATION, 2023, 107 (02) : 392 - 404