Aspiration-assisted bioprinting for precise positioning of biologics

被引:212
作者
Ayan, Bugra [1 ,2 ]
Heo, Dong Nyoung [1 ,2 ,3 ]
Zhang, Zhifeng [1 ]
Dey, Madhuri [2 ,4 ]
Povilianskas, Adomas [1 ]
Drapaca, Corina [1 ]
Ozbolat, Ibrahim T. [1 ,2 ,5 ,6 ]
机构
[1] Penn State Univ, Engn Sci & Mech Dept, University Pk, PA 16802 USA
[2] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[3] Kyung Hee Univ, Sch Dent, Dept Dent Mat, Seoul 02447, South Korea
[4] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[5] Penn State Univ, Biomed Engn Dept, University Pk, PA 16802 USA
[6] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
IN-VITRO; ENDOTHELIAL-CELLS; SPHEROID CULTURE; STEM-CELLS; ANGIOGENESIS; DETACHMENT; PARTICLES;
D O I
10.1126/sciadv.aaw5111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of minitissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil "aspiration-assisted bioprinting (AAB)," which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, similar to 11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 mu m), tissue strands (similar to 800 mu m), or single cells (electrocytes, similar to 400 mu m), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.
引用
收藏
页数:16
相关论文
共 55 条
[1]   Fabrication of cell-laden three-dimensional alginate-scaffolds with an aerosol cross-linking process [J].
Ahn, SeungHyun ;
Lee, HyeongJin ;
Puetzer, Jennifer ;
Bonassar, Lawrence J. ;
Kim, GeunHyung .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :18735-18740
[2]   Writing in the granular gel medium [J].
Bhattacharjee, Tapomoy ;
Zehnder, Steven M. ;
Rowe, Kyle G. ;
Jain, Suhani ;
Nixon, Ryan M. ;
Sawyer, W. Gregory ;
Angelini, Thomas E. .
SCIENCE ADVANCES, 2015, 1 (08)
[3]  
Blakely AM, 2015, TISSUE ENG PART C-ME, V21, P737, DOI [10.1089/ten.TEC.2014.0439, 10.1089/ten.tec.2014.0439]
[4]   Nanoparticles at fluid interfaces [J].
Bresme, F. ;
Oettel, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (41)
[5]   Bioprinting of a functional vascularized mouse thyroid gland construct [J].
Bulanova, Elena A. ;
Koudan, Elizaveta V. ;
Degosserie, Jonathan ;
Heymans, Charlotte ;
Pereira, Frederico D. A. S. ;
Parfenov, Vladislav A. ;
Sun, Yi ;
Wang, Qi ;
Akhmedova, Suraya A. ;
Sviridova, Irina K. ;
Sergeeva, Natalia S. ;
Frank, Georgy A. ;
Khesuani, Yusef D. ;
Pierreux, Christophe E. ;
Mironov, Vladimir A. .
BIOFABRICATION, 2017, 9 (03)
[6]   Pericytes modulate endothelial sprouting [J].
Chang, William G. ;
Andrejecsk, Jillian W. ;
Kluger, Martin S. ;
Saltzman, W. Mark ;
Pober, Jordan S. .
CARDIOVASCULAR RESEARCH, 2013, 100 (03) :492-500
[7]   Bioprinting for vascular and vascularized tissue biofabrication [J].
Datta, Pallab ;
Ayan, Bugra ;
Ozbolat, Ibrahim T. .
ACTA BIOMATERIALIA, 2017, 51 :1-20
[8]   Mechanisms of formation and disintegration of alginate beads obtained by prilling [J].
Del Gaudio, P ;
Colombo, P ;
Colombo, G ;
Russo, P ;
Sonvico, F .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2005, 302 (1-2) :1-9
[9]  
Dingle YTL, 2015, TISSUE ENG PART C-ME, V21, P1274, DOI [10.1089/ten.tec.2015.0135, 10.1089/ten.TEC.2015.0135]
[10]   Spheroid culture as a tool for creating 3D complex tissues [J].
Fennema, Eelco ;
Rivron, Nicolas ;
Rouwkema, Jeroen ;
van Blitterswijk, Clemens ;
de Boer, Jan .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (02) :108-115