Engineering Bacteroides thetaiotaomicron to produce non-native butyrate based on a genome-scale metabolic model-guided design

被引:21
作者
Kim, Kangsan [1 ]
Choe, Donghui [1 ]
Song, Yoseb [1 ]
Kang, Minjeong [1 ]
Lee, Seung-Goo [2 ]
Lee, Dae-Hee [2 ]
Cho, Byung-Kwan [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, Daejeon 34141, South Korea
[2] Korea Res Inst Biosci & Biotechnol, Synthet Biol & Bioengn Res Ctr, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst BioCentury, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Bacteroides thetaiotaomicron; Genome-scale metabolic model; Flux-balance analysis; Butyrate; Commensal microbes; ESCHERICHIA-COLI; GENE-EXPRESSION; KNOCKOUT STRATEGIES; ACETATE METABOLISM; GROWTH; FRAGILIS; BACTERIA; FLUX; RESISTANCE; MICROBIOME;
D O I
10.1016/j.ymben.2021.10.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bacteroides thetaiotaomicron represents a major symbiont of the human gut microbiome that is increasingly viewed as a promising candidate strain for microbial therapeutics. Here, we engineer B. thetaiotaomicron for heterologous production of non-native butyrate as a proof-of-concept biochemical at therapeutically relevant concentrations. Since B. thetaiotaomicron is not a natural producer of butyrate, we heterologously expressed a butyrate biosynthetic pathway in the strain, which led to the production of butyrate at the final concentration of 12 mg/L in a rich medium. Further optimization of butyrate production was achieved by a round of metabolic engineering guided by an expanded genome-scale metabolic model (GEM) of B. thetaiotaomicron. The in silico knock-out simulation of the expanded model showed that pta and ldhD were the potent knock-out targets to enhance butyrate production. The maximum titer and specific productivity of butyrate in the pta-ldhD double knockout mutant increased by nearly 3.4 and 4.8 folds, respectively. To our knowledge, this is the first engineering attempt that enabled butyrate production from a non-butyrate producing commensal B. thetaiotaomicron. The study also highlights that B. thetaiotaomicron can serve as an effective strain for live microbial therapeutics in human.
引用
收藏
页码:174 / 186
页数:13
相关论文
共 99 条
[1]  
Adamberg Signe, 2014, Front Nutr, V1, P21, DOI 10.3389/fnut.2014.00021
[2]   Comparative In silico Analysis of But Production Pathways in Gut Commensals and Pathogens [J].
Anand, Swadha ;
Kaur, Harrisham ;
Mande, Sharmila S. .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[3]   Butyrate Production in Engineered Escherichia coli With Synthetic Scaffolds [J].
Baek, Jang-Mi ;
Mazumdar, Suman ;
Lee, Sang-Woo ;
Jung, Moo-Young ;
Lim, Jae-Hyung ;
Seo, Sang-Woo ;
Jung, Gyoo-Yeol ;
Oh, Min-Kyu .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (10) :2790-2794
[4]   Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice [J].
Bai Liang ;
Gao Mengxue ;
Cheng Xiaoming ;
Kang Guangbo ;
Cao Xiaocang ;
Huang He .
MICROBIAL CELL FACTORIES, 2020, 19 (01)
[5]   Production and Sensing of Butyrate in a Probiotic E. coli Strain [J].
Bai, Yanfen ;
Mansell, Thomas J. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (10)
[6]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[7]   The essential role of fumarate reductase in haem-dependent growth stimulation of Bacteroides fragilis [J].
Baughn, AD ;
Malamy, MH .
MICROBIOLOGY-SGM, 2003, 149 :1551-1558
[8]   A mitochondrial-like aconitase in the bacterium Bacteroides fragilis:: Implications for the evolution of the mitochondrial Krebs cycle [J].
Baughn, AD ;
Malamy, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4662-4667
[9]   Context-specific metabolic networks are consistent with experiments [J].
Becker, Scott A. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (05)
[10]  
Blaut M., 1997, BIOENERGETICS, DOI [10.1007/978-3-0348-8994-0_4, DOI 10.1007/978-3-0348-8994-0_4]