Computational Methods to Predict Protein Functions from Protein-Protein Interaction Networks

被引:6
作者
Zhao, Bihai [2 ]
Wang, Jianxin [1 ]
Wu, Fang-Xiang [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Comp Bldg 303, Changsha 410083, Hunan, Peoples R China
[2] Changsha Univ, Dept Math & Comp Sci, Changsha 410022, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Protein-protein interaction; protein function prediction; neural network; frequent pattern; support vector machine; heterogeneous data fusion; functional similarity; GENE ONTOLOGY; SUBCELLULAR-LOCALIZATION; ANNOTATIONS; ORTHOLOGY; ALGORITHM; FRAMEWORK; GENOMES;
D O I
10.2174/1389203718666170505121219
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Predicting functions of proteins is a key issue in the post-genomic era. Some experimental methods have been designed to predict protein functions. However, these methods cannot accommodate the vast amount of sequence data due to their inherent difficulty and expense. To address these problems, a lot of computational methods have been proposed to predict the function of proteins. In this paper, we provide a comprehensive survey of the current techniques for computational prediction of protein functions. We begin with introducing the formal description of protein function prediction and evaluation of prediction methods. We then focus on the various approaches available in categories of supervised and unsupervised methods for predicting protein functions. Finally, we discuss challenges and future works in this field.
引用
收藏
页码:1120 / 1131
页数:12
相关论文
共 110 条
[1]  
Altafulamin M., 2005, PREDICTION PROTEIN F
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   A new protein graph model for function prediction [J].
Alvarez, Marco A. ;
Yan, Changhui .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2012, 37 :6-10
[4]  
[Anonymous], 2013, BMC GENOMICS
[5]  
[Anonymous], 2012, 2012 IEEE INT C BIOI
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]  
Barros Rodrigo C., 2013, Machine Learning and Knowledge Discovery in Databases. European Conference (ECML PKDD 2013). Proceedings: LNCS 8189, P385, DOI 10.1007/978-3-642-40991-2_25
[8]   Hierarchical multi-label prediction of gene function [J].
Barutcuoglu, Z ;
Schapire, RE ;
Troyanskaya, OG .
BIOINFORMATICS, 2006, 22 (07) :830-836
[9]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[10]  
Benso A., 2012, USING GNOME WIDE DAT