Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing

被引:110
作者
Belser, Caroline [1 ]
Baurens, Franc-Christophe [2 ,3 ]
Noel, Benjamin [1 ]
Martin, Guillaume [2 ,3 ]
Cruaud, Corinne [4 ]
Istace, Benjamin [1 ]
Yahiaoui, Nabila [2 ,3 ]
Labadie, Karine [4 ]
Hribova, Eva [5 ]
Dolezel, Jaroslav [5 ]
Lemainque, Arnaud [4 ]
Wincker, Patrick [1 ]
D'Hont, Angelique [2 ,3 ]
Aury, Jean-Marc [1 ]
机构
[1] Univ Paris Saclay, Univ Evry, Inst Francois Jacob, CNRS,Genom Metab,Genoscope,CEA, Evry, France
[2] UMR AGAP Inst, CIRAD, Montpellier, France
[3] Univ Montpellier, UMR AGAP Inst, Inst Agro, INRAE,CIRAD, Montpellier, France
[4] Genoscope, Inst Francois Jacob, Commissariat Energie Atom CEA, Evry, France
[5] Czech Acad Sci, Ctr Reg Hana Biotechnol & Agr Res, Inst Expt Bot, Olomouc, Czech Republic
关键词
GENOME; EVOLUTION; DNA; PROGRAM; READS;
D O I
10.1038/s42003-021-02559-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Belser, Baurens et al. report a chromosome-scale assembly of a banana genome (Musa acuminata) with five out of eleven chromosomes entirely reconstructed in a single contig from telomere to telomere. This work sheds light on the content of complex regions like centromeres or clusters of paralogous genes in the banana genome. Long-read technologies hold the promise to obtain more complete genome assemblies and to make them easier. Coupled with long-range technologies, they can reveal the architecture of complex regions, like centromeres or rDNA clusters. These technologies also make it possible to know the complete organization of chromosomes, which remained complicated before even when using genetic maps. However, generating a gapless and telomere-to-telomere assembly is still not trivial, and requires a combination of several technologies and the choice of suitable software. Here, we report a chromosome-scale assembly of a banana genome (Musa acuminata) generated using Oxford Nanopore long-reads. We generated a genome coverage of 177X from a single PromethION flowcell with near 17X with reads longer than 75 kbp. From the 11 chromosomes, 5 were entirely reconstructed in a single contig from telomere to telomere, revealing for the first time the content of complex regions like centromeres or clusters of paralogous genes.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A telomere-to-telomere genome assembly of the protandrous hermaphrodite blackhead seabream, Acanthopagrus schlegelii
    Zhang, Kai
    Guo, Sixin
    Yang, Shaosen
    Zhou, Wenchuan
    Wu, Jinhui
    Zhang, Xinhui
    Shi, Qiong
    Deng, Li
    SCIENTIFIC DATA, 2025, 12 (01)
  • [32] A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics
    Mao, Yafei
    Zhang, Guojie
    NATURE METHODS, 2022, 19 (06) : 635 - 638
  • [33] Telomere-to-telomere assembly of cassava genome reveals the evolution of cassava and divergence of allelic expression
    Xu, Xin-Dong
    Zhao, Ru-Peng
    Xiao, Liang
    Lu, Liuying
    Gao, Min
    Luo, Yu-Hong
    Zhou, Zu-Wen
    Ye, Si-Ying
    Qian, Yong-Qing
    Fan, Bing-Liang
    Shang, Xiaohong
    Shi, Pingli
    Zeng, Wendan
    Cao, Sheng
    Wu, Zhengdan
    Yan, Huabing
    Chen, Ling-Ling
    Song, Jia-Ming
    HORTICULTURE RESEARCH, 2023, 10 (11)
  • [34] Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits
    Wu, Hui
    Luo, Ling-Yun
    Zhang, Ya-Hui
    Zhang, Chong-Yan
    Huang, Jia-Hui
    Mo, Dong-Xin
    Zhao, Li-Ming
    Wang, Zhi-Xin
    Wang, Yi-Chuan
    He-Hua, Eer
    Bai, Wen-Lin
    Han, Di
    Dou, Xing-Tang
    Ren, Yan-Ling
    Dingkao, Renqing
    Chen, Hai-Liang
    Ye, Yong
    Du, Hai-Dong
    Zhao, Zhan-Qiang
    Wang, Xi-Jun
    Jia, Shan-Gang
    Liu, Zhi-Hong
    Li, Meng-Hua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] Telomere-to-telomere genome assembly of Electrophorus electricus provides insights into the evolution of electric eels
    Qi, Zan
    Liu, Qun
    Li, Haorong
    Zhang, Yaolei
    Yu, Ziwei
    Luo, Wenkai
    Wang, Kun
    Zhang, Yuxin
    Pan, Shoupeng
    Wang, Chao
    Jiang, Hui
    Qiu, Qiang
    Wang, Wen
    Fan, Guangyi
    Li, Yongxin
    GIGASCIENCE, 2025, 14
  • [36] Gap-free telomere-to-telomere haplotype assembly of the tomato hind (Cephalopholis sonnerati)
    Lu, Sheng
    Liu, Yang
    Li, Ming
    Ge, Qijin
    Wang, Chongwei
    Song, Yu
    Zhou, Bo
    Chen, Songlin
    SCIENTIFIC DATA, 2024, 11 (01)
  • [37] Structural variation in humans and our primate kin in the era of telomere-to-telomere genomes and pangenomics
    Rocha, Joana L.
    Lou, Runyang N.
    Sudmant, Peter H.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2024, 87
  • [38] Telomere-to-telomere genome assembly of Eleocharis dulcis and expression profiles during corm development
    Chen, Yang
    Zhang, Xinyi
    Wang, Lingyun
    Fang, Mingya
    Lu, Ruisen
    Ma, Yazhen
    Huang, Yan
    Chen, Xiaoyang
    Sheng, Wei
    Shi, Lin
    Zheng, Zhaisheng
    Qiu, Yingxiong
    SCIENTIFIC DATA, 2024, 11 (01)
  • [39] Decoding the Genetic Code: Scientific Exploration of the Telomere-to-telomere (T2T) Genome
    Wang, Linjuan
    Li, Yujia
    Zhang, Zhepei
    Song, Fengcheng
    Zan, Yufei
    Zheng, Ranxi
    Yuan, Zhengrong
    CURRENT BIOINFORMATICS, 2024,
  • [40] quarTeT: a telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification
    Lin, Yunzhi
    Ye, Chen
    Li, Xingzhu
    Chen, Qinyao
    Wu, Ying
    Zhang, Feng
    Pan, Rui
    Zhang, Sijia
    Chen, Shuxia
    Wang, Xu
    Cao, Shuo
    Wang, Yingzhen
    Yue, Yi
    Liu, Yongsheng
    Yue, Junyang
    HORTICULTURE RESEARCH, 2023, 10 (08)