Ground State Solution of Critical p-Biharmonic Equation Involving Hardy Potential

被引:4
作者
Yu, Yang [1 ]
Zhao, Yulin [1 ]
Luo, Chaoliang [1 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Hunan, Peoples R China
关键词
p-Biharmonic equation; Hardy potential; Nehari manifold; Critical exponent; Nonlinear elliptic equations; SIGN-CHANGING SOLUTIONS; BOUNDARY-VALUE PROBLEM; MULTIPLICITY; EXISTENCE;
D O I
10.1007/s40840-021-01192-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following critical p-biharmonic equation involving Hardy potential D(p)(2)u - Delta(q)u - mu vertical bar u vertical bar(p-2)u/vertical bar x vertical bar(2p) = vertical bar u vertical bar(p)*(-2)u, x epsilon R-N, where 2 <= p < N/2, 0 < mu < mu(N, p) = ((p-1) N( N-2p)/p(2))(p), Delta(2)(p)u = Delta(vertical bar Delta u vertical bar(p-2) Delta u), q = p* = Np/N-p, and p* = Np/N-2p. The existence of ground state solution to above equation is established by using the Nehari manifold and some analysis techniques. Our result extends the existing results in the literature.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 17 条
[1]   Landau-Bloch Theorems for Bounded Biharmonic Mappings [J].
Aghalary, Rasoul ;
Mohammadian, Ali ;
Jahangiri, Jay .
FILOMAT, 2019, 33 (14) :4593-4601
[2]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[3]   MULTIPLE SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p BIHARMONIC OPERATOR [J].
Candito, Pasquale ;
Bisci, Giovanni Molica .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (04) :741-751
[4]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389
[5]   Existence and multiplicity of solutions for a singular problem involving the p-biharmonic operator in RN [J].
Dhifli, Abdelwaheb ;
Alsaedi, Ramzi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (02)
[6]   Sign-changing solutions for p-biharmonic equations with Hardy potential [J].
Huang, Yisheng ;
Liu, Xiangqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :142-154
[7]  
Liu X., 2017, ELECTRON J DIFFER EQ, V45, P1
[8]   A simple approach to Hardy inequalities [J].
Mitidieri, E .
MATHEMATICAL NOTES, 2000, 67 (3-4) :479-486
[9]   A NON-LINEAR SINGULAR BOUNDARY-VALUE PROBLEM IN THE THEORY OF PSEUDOPLASTIC FLUIDS [J].
NACHMAN, A ;
CALLEGARI, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (02) :275-281
[10]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1