Hierarchical Co-Attention Selection Network for Interpretable Fake News Detection

被引:3
作者
Ge, Xiaoyi [1 ]
Hao, Shuai [2 ]
Li, Yuxiao [3 ]
Wei, Bin [1 ]
Zhang, Mingshu [1 ]
机构
[1] Engn Univ PAP, Coll Cryptog Engn, Xian 710018, Peoples R China
[2] Stevens Inst Technol, Elect & Comp Engn, Hoboken, NJ 07030 USA
[3] McGill Univ, Math & Stat, Montreal, PQ H3A 0G4, Canada
关键词
fake news detection; interpretable AI; co-attention mechanism; hierarchical selection network;
D O I
10.3390/bdcc6030093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media fake news has become a pervasive and problematic issue today with the development of the internet. Recent studies have utilized different artificial intelligence technologies to verify the truth of the news and provide explanations for the results, which have shown remarkable success in interpretable fake news detection. However, individuals' judgments of news are usually hierarchical, prioritizing valuable words above essential sentences, which is neglected by existing fake news detection models. In this paper, we propose an interpretable novel neural network-based model, the hierarchical co-attention selection network (HCSN), to predict whether the source post is fake, as well as an explanation that emphasizes important comments and particular words. The key insight of the HCSN model is to incorporate the Gumbel-Max trick in the hierarchical co-attention selection mechanism that captures sentence-level and word-level information from the source post and comments following the sequence of words-sentences-words-event. In addition, HCSN enjoys the additional benefit of interpretability-it provides a conscious explanation of how it reaches certain results by selecting comments and highlighting words. According to the experiments conducted on real-world datasets, our model outperformed state-of-the-art methods and generated reasonable explanations.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Fake news detection: A survey of graph neural network methods
    Phan, Huyen Trang
    Nguyen, Ngoc Thanh
    Hwang, Dosam
    APPLIED SOFT COMPUTING, 2023, 139
  • [42] Dynamic graph neural network for fake news detection q
    Song, Chenguang
    Teng, Yiyang
    Zhu, Yangfu
    Wei, Siqi
    Wu, Bin
    NEUROCOMPUTING, 2022, 505 : 362 - 374
  • [43] Automated Fake News Detection by LSTM Enabled with Optimal Feature Selection
    Nithya, S. Hannah
    Sahayadhas, Arun
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2022, 21 (03)
  • [44] An Attribute-wise Attention model with BiLSTM for an efficient Fake News Detection
    Adline Rajasenah Merryton
    M. Gethsiyal Augasta
    Multimedia Tools and Applications, 2024, 83 : 38109 - 38126
  • [45] Balanced Multi-modal Learning with Hierarchical Fusion for Fake News Detection
    Wu, Fei
    Chen, Shu
    Gao, Guangwei
    Ji, Yimu
    Jing, Xiao-Yuan
    PATTERN RECOGNITION, 2025, 164
  • [46] An Attribute-wise Attention model with BiLSTM for an efficient Fake News Detection
    Merryton, Adline Rajasenah
    Augasta, M. Gethsiyal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38109 - 38126
  • [47] Multi-Domain Fake News Detection Based on Serial Attention Networks
    Qiu, Chongfeng
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 91 - 96
  • [48] FNED: A Deep Network for Fake News Early Detection on Social Media
    Liu, Yang
    Wu, Yi-Fang Brook
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (03)
  • [49] Fake news detection using knowledge graph and graph convolutional network
    Vy Duong Kim Nguyen
    Phuc Do
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11107 - 11119
  • [50] Cycle mapping with adversarial event classification network for fake news detection
    Wu, Fei
    Zhou, Hong
    Feng, Yujian
    Gao, Guangwei
    Ji, Yimu
    Jing, Xiao-Yuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (30) : 74101 - 74122