Spectral methods in a part of a disk

被引:6
作者
Bernardi, C
Karageorghis, A
机构
[1] UNIV PARIS 06, F-75252 PARIS 05, FRANCE
[2] UNIV CYPRUS, DEPT MATH & STAT, NICOSIA, CYPRUS
关键词
D O I
10.1007/s002110050193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to spectral methods for the discretization of elliptic equations in a part of a disk, relying on the use of polar coordinates and approximation by high degree polynomials with respect to each coordinate. We describe the discretization for two model problems: the Poisson equation and the bilaplacian equation, we perform the numerical analysis in each case and we present numerical results.
引用
收藏
页码:265 / 289
页数:25
相关论文
共 9 条
[1]  
AZAIEZ M, 1995, 95008 LAB AN NUM U P
[2]  
AZAIEZ M, 1994, PUBLICATION IRMAR, V9417
[3]  
BERNARDI C, 1996, IN PRESS HDB NUMERIC, V5
[4]  
BERNARDI C, 1992, 92039 LAB AN NUM U P
[5]  
BERNARDI C, 1994, 94008 LAB AN NUM U P
[6]  
Girault V., 1986, THEORY ALGORITHMS SP
[7]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[8]  
KARAGEORGHIS A, 1994, TR1294 DEP MATH STAT
[9]  
LIONS JL, 1968, PROBLEMES AUX LIMITE, V1