On Urysohn type Generalized Sampling Operators

被引:0
作者
Karsli, Harun [1 ]
机构
[1] Abant Izzet Baysal Univ, Fac Sci & Arts, Dept Math, TR-14030 Golkoy Bolu, Turkey
来源
DOLOMITES RESEARCH NOTES ON APPROXIMATION | 2021年 / 14卷
关键词
generalized sampling series; interpolation; Urysohn integral operators; approximation; APPROXIMATION PROPERTIES; INTEGRAL-OPERATORS; CONVERGENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to define and study Urysohn type integral form of generalized sampling operators by using the Urysohn type interpolation of the given function f. The basis used in this construction are the Frechet and Prenter Denstity theorems together with Urysohn type operator values instead of the rational sampling values of the function. After that, we investigate some properties of this operators in some function spaces. At the end of this study, some graphical representations for the various examples are given related with the Urysohn type sampling operators.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
[41]   Durrmeyer type modification of generalized Baskakov operators [J].
Erencin, Aysegul .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) :4384-4390
[43]   Exponential Sampling Type Kantorovich Max-Product Neural Network Operators [J].
Bajpeyi, Shivam ;
Baxhaku, Behar ;
Agrawal, Purshottam Narain .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, :631-650
[44]   Approximation by exponential sampling type neural network operators [J].
Bajpeyi, Shivam ;
Kumar, A. Sathish .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
[45]   Convergence properties of Durrmeyer-type sampling operators [J].
Sharma, Vaibhav ;
Gupta, Vijay .
COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (07)
[46]   Approximation by max-product sampling Kantorovich operators with generalized kernels [J].
Coroianu, Lucian ;
Costarelli, Danilo ;
Gal, Sorin G. ;
Vinti, Gianluca .
ANALYSIS AND APPLICATIONS, 2021, 19 (02) :219-244
[47]   Exponential sampling type neural network Kantorovich operators based on Hadamard fractional integral [J].
Agrawal, Purshottam N. ;
Baxhaku, Behar .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 1600, 0 (02) :2041-6520-2041-6539
[49]   Generalized Bernstein-Durrmeyer operators of blending type [J].
Kajla, Arun ;
Goyal, Meenu .
AFRIKA MATEMATIKA, 2019, 30 (7-8) :1103-1118
[50]   Modular filter convergence theorems for abstract sampling type operators [J].
Bardaro, C. ;
Boccuto, A. ;
Dimitriou, X. ;
Mantellini, I. .
APPLICABLE ANALYSIS, 2013, 92 (11) :2404-2423