Pairing in the Hubbard model on the honeycomb lattice with hopping up to the third-nearest-neighbor

被引:5
作者
Jia, Peizhe [1 ]
Yang, Shuhui [1 ]
Li, Weiqi [1 ]
Yang, Jianqun [2 ]
Ying, Tao [1 ]
Li, Xingji [2 ]
Sun, Xiudong [3 ,4 ,5 ,6 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Modern Opt, Sch Phys, Harbin 150001, Peoples R China
[4] Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Harbin 150001, Peoples R China
[5] Harbin Inst Technol, Key Lab Microopt & Photon Technol Heilongjiang Pr, Harbin 150001, Peoples R China
[6] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
关键词
Hubbard model; Pairing symmetry; Quantum Monte Carlo; Second-nearest-neighbor hopping; Third-nearest-neighbor hopping; SIGN PROBLEM; GRAPHENE; TRANSPORT; SUPERCONDUCTIVITY;
D O I
10.1016/j.physleta.2022.128175
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The electronic properties of graphene can be approximately described by the standard Hubbard model on the honeycomb lattice. It was argued that the d + id-wave pairing is the dominant pairing symmetry in such a system. However, in the standard Hubbard model, only the nearest-neighbor hopping t(1) is considered, while the second-nearest-neighbor hopping t(2) and third-nearest-neighbor hopping t(3) are ignored. In this paper, by doing the determinant quantum Monte Carlo simulations of the Hubbard model with hopping up to the third-nearest-neighbor, we examine the effect of t(2) and t(3) on the pairing symmetries. We find that the second- and third-nearest-neighbor hopping amplitudes have strong effect on the d + id-wave pairing symmetry. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 44 条
[1]   Chiral d-wave superconductivity in doped graphene [J].
Black-Schaffer, Annica M. ;
Honerkamp, Carsten .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (42)
[2]   Resonating valence bonds and mean-field d-wave superconductivity in graphite [J].
Black-Schaffer, Annica M. ;
Doniach, Sebastian .
PHYSICAL REVIEW B, 2007, 75 (13)
[3]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[4]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Competing orders at higher-order Van Hove points [J].
Classen, Laura ;
Chubukov, Andrey, V ;
Honerkamp, Carsten ;
Scherer, Michael M. .
PHYSICAL REVIEW B, 2020, 102 (12)
[7]   The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds [J].
Csányi, G ;
Littlewood, PB ;
Nevidomskyy, AH ;
Pickard, CJ ;
Simons, BD .
NATURE PHYSICS, 2005, 1 (01) :42-45
[8]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[9]   Cyclotron resonance study of the electron and hole velocity in graphene monolayers [J].
Deacon, R. S. ;
Chuang, K.-C. ;
Nicholas, R. J. ;
Novoselov, K. S. ;
Geim, A. K. .
PHYSICAL REVIEW B, 2007, 76 (08)
[10]   Josephson current and multiple Andreev reflections in graphene SNS junctions [J].
Du, Xu ;
Skachko, Ivan ;
Andrei, Eva Y. .
PHYSICAL REVIEW B, 2008, 77 (18)