Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia

被引:236
作者
Xu, ZR
Chen, LY
Leung, L
Yen, TSB
Lee, C
Chan, JY
机构
[1] Univ Calif Irvine, Dept Pathol, Irvine, CA 92697 USA
[2] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA
[3] Vet Affairs Med Ctr, Dept Pathol, San Francisco, CA 94121 USA
[4] Univ Calif San Francisco, San Francisco, CA 94121 USA
关键词
hepatocellular carcinoma; oxidative stress; knockout mouse;
D O I
10.1073/pnas.0500660102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Knockout studies have shown that the transcription factor Nrf1 is essential for embryonic development. Nrf1 has been implicated to play a role in mediating activation of oxidative stress response genes through the antioxidant response element (ARE). Because of embryonic lethality in knockout mice, analysis of this function in the adult knockout mouse was not possible. We report here that mice with somatic inactivation of nrf1 in the liver developed hepatic cancer. Before cancer development, mutant livers exhibited steatosis, apoptosis, necrosis, inflammation, and fibrosis. In addition, hepatocytes lacking Nrf1 showed oxidative stress, and gene expression analysis showed decreased expression of various ARE-containing genes, and up-regulation of CYP4A genes. These results suggest that reactive oxygen species generated from CYP4A-mediated fatty acid oxidation work synergistically with diminished expression of ARE-responsive genes to cause oxidative stress in mutant hepatocytes. Thus, Nrf1 has a protective function against oxidative stress and, potentially, a function in lipid homeostasis in the liver. Because the phenotype is similar to nonalcoholic steatohepatitis, these animals may prove useful as a model for investigating molecular mechanisms of nonalcoholic steatohepatitis and liver cancer.
引用
收藏
页码:4120 / 4125
页数:6
相关论文
共 42 条
[1]   Regulation of JNK signaling by GSTp [J].
Adler, V ;
Yin, ZM ;
Fuchs, SY ;
Benezra, M ;
Rosario, L ;
Tew, KD ;
Pincus, MR ;
Sardana, M ;
Henderson, CJ ;
Wolf, CR ;
Davis, RJ ;
Ronai, Z .
EMBO JOURNAL, 1999, 18 (05) :1321-1334
[2]   Molecular mediators of hepatic steatosis and liver injury [J].
Browning, JD ;
Horton, JD .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (02) :147-152
[3]  
Brunt EM, 2004, SEMIN LIVER DIS, V24, P3
[4]   Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein [J].
Chan, JY ;
Kwong, M .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2000, 1517 (01) :19-26
[5]   Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice [J].
Chan, JY ;
Kwong, M ;
Lu, RH ;
Chang, J ;
Wang, B ;
Yen, TSB ;
Kan, YW .
EMBO JOURNAL, 1998, 17 (06) :1779-1787
[6]   Nrf2 is essential for protection against acute pulmonary injury in mice [J].
Chan, KM ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12731-12736
[7]   NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development [J].
Chan, KM ;
Lu, RH ;
Chang, JC ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13943-13948
[8]   Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice [J].
Chanas, SA ;
Jiang, Q ;
McMahon, M ;
McWalter, GK ;
McLellan, LI ;
Elcombe, CR ;
Henderson, CJ ;
Wolf, CR ;
Moffat, GJ ;
Itoh, K ;
Yamamoto, M ;
Hayes, JD .
BIOCHEMICAL JOURNAL, 2002, 365 (02) :405-416
[9]   Nrf1 is critical for redox balance and survival of liver cells during development [J].
Chen, LY ;
Kwong, M ;
Lu, RH ;
Ginzinger, D ;
Lee, C ;
Leung, L ;
Chan, JY .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (13) :4673-4686
[10]   Role of NRF2 in protection against hyperoxic lung injury in mice [J].
Cho, HY ;
Jedlicka, AE ;
Reddy, SP ;
Kensler, TW ;
Yamamoto, M ;
Zhang, LY ;
Kleeberger, SR .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2002, 26 (02) :175-182