Real-time Pedestrian Localization and State Estimation Using Moving Horizon Estimation

被引:8
|
作者
Mohammadbagher, Ehsan
Bhatt, Neel P.
Hashemi, Ehsan
Fidan, Baris
Khajepour, Amir
机构
来源
2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC) | 2020年
关键词
3D Pedestrian Localization; State Estimation; Deep Neural Networks; Autonomous Driving;
D O I
10.1109/itsc45102.2020.9294306
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we propose a constrained moving horizon state estimation approach to estimate a pedestrian's states in 3D with respect to a global stationary frame including position, velocity, and acceleration that are robust to intermittently noisy or absent sensor measurements. Utilizing a computationally light-weight fusion of a Deep Neural Network based 2D pedestrian detection algorithm and projected LIDAR depth measurements, the approach produces the required measurements relative to the vehicle frame and combines them with the rotation and translation information obtained via odometry. The performance of the proposed approach is experimentally verified on our dataset featuring urban pedestrian crossings, with and without ego vehicle motion.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A real-time algorithm for moving horizon state and parameter estimation
    Kuehl, Peter
    Diehl, Moritz
    Kraus, Tom
    Schloeder, Johannes P.
    Bock, Hans Georg
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 71 - 83
  • [2] Real-Time Moving Horizon State and Parameter Estimation for SMB Processes
    Kuepper, Achim
    Diehl, Moritz
    Schloederl, Johannes P.
    Bock, Hans G.
    Engell, Sebastian
    10TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2009, 27 : 1233 - 1238
  • [3] Real-Time Longitudinal and Lateral State Estimation of Preceding Vehicle Based on Moving Horizon Estimation
    Liu, Hanghang
    Wang, Ping
    Lin, Jiamei
    Ding, Haitao
    Chen, Hong
    Xu, Fang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) : 8755 - 8768
  • [4] Real-time moving horizon estimation for a vibrating active cantilever
    Abdollahpouri, Mohammad
    Takacs, Gergely
    Rohal'-Ilkiv, Boris
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 86 : 1 - 15
  • [5] Convergence Guarantees for Moving Horizon Estimation Based on the Real-Time Iteration Scheme
    Wynn, Andrew
    Vukov, Milan
    Diehl, Moritz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (08) : 2215 - 2221
  • [6] Real-time nonlinear moving horizon observer with pre-estimation for aircraft sensor fault detection and estimation
    Wan, Yiming
    Keviczky, Tamas
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (16) : 5394 - 5411
  • [7] Real-time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control
    Lao, Liangfeng
    Ellis, Matthew
    Durand, Helen
    Christofides, Panagiotis D.
    AICHE JOURNAL, 2015, 61 (10) : 3374 - 3389
  • [8] Real-Time Fault-Tolerant Moving Horizon Air Data Estimation for the RECONFIGURE Benchmark
    Wan, Yiming
    Keviczky, Tamas
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (03) : 997 - 1011
  • [9] Real-time Dynamic State Estimation Using Synchrophasor Data
    Pulok, Md Kamrul Hasan
    Faruque, M. Omar
    2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2015,
  • [10] Event-Triggered State Estimation of Linear Systems Using Moving Horizon Estimation
    Yin, Xunyuan
    Liu, Jinfeng
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (02) : 901 - 909