Simplification of surface parametrizations - a lattice polygon approach

被引:16
作者
Schicho, J [1 ]
机构
[1] Univ Linz, Res Inst Symbol Computat, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/S0747-7171(03)00094-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a convex lattice polygon, we compute a descending sequence of lattice polygons obtained by repeatedly passing to the convex hull of the interior lattice points. This process gives the idea for an algorithm that simplifies a given parametric surface by reparametrization. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 554
页数:20
相关论文
共 13 条
[1]  
Arnol'd V., 1980, FUNK ANAL PRIL, V14, P1
[2]  
BARANY I., 1992, Combinatorics, Probability and Computing, V1, P295
[3]   REMARKS ON ADJOINTS AND ARITHMETIC GENERA OF ALGEBRAIC VARIETIES [J].
BLASS, P ;
LIPMAN, J .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (02) :331-336
[4]   Pluricanonical cohomology across flips [J].
Brown, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 :513-522
[5]   ON THE CONVEX LAYERS OF A PLANAR SET [J].
CHAZELLE, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) :509-517
[6]  
FULTON W, 1993, INTRO TORIC GEOMETRY
[7]   Shape of toric surfaces [J].
Krasauskas, R .
SPRING CONFERENCE ON COMPUTER GRAPHICS, PROCEEDINGS, 2001, :55-62
[8]  
RABINOWITZ S, 1989, ARS COMBINATORIA, V28, P83
[9]   Rational parametrization of surfaces [J].
Schicho, J .
JOURNAL OF SYMBOLIC COMPUTATION, 1998, 26 (01) :1-29
[10]   A degree bound for the parameterization of a rational surface [J].
Schicho, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 145 (01) :91-105