On the Diophantine equation (x2 ± C)(y2 ± D) = z4

被引:1
|
作者
Yuan, Pingzhi [2 ]
Luo, Jiagui [1 ]
机构
[1] Zhaoqing Univ, Coll Math & Informat Sci, Zhaoqing 526061, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
Diophantine equations; Lehmer sequences; LEHMER SEQUENCES; SQUARES; FAMILY;
D O I
10.4064/aa144-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:69 / 95
页数:27
相关论文
共 50 条
  • [1] ON THE DIOPHANTINE INEQUALITY |X2 - cXY2 + Y4| ≤ c+2
    He, Bo
    Pink, Istvan
    Pinter, Akos
    Togbe, Alain
    GLASNIK MATEMATICKI, 2013, 48 (02) : 291 - 299
  • [2] The Diophantine equation x2
    Nguyen Xuan Tho
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 121 - 139
  • [3] ON THE DIOPHANTINE EQUATION x2
    Alan, Murat
    Aydin, Mustafa
    ARCHIVUM MATHEMATICUM, 2023, 59 (05): : 411 - 420
  • [4] Representing n as n = x plus y + z with x2 + y2 + z2 a square
    Huang, Chao
    Sun, Zhi-Wei
    ARCHIV DER MATHEMATIK, 2023, 121 (03) : 231 - 239
  • [5] An Exponential Diophantine Equation x2
    Muthuvel, S.
    Venkatraman, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04) : 1125 - 1128
  • [6] UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS FOR THE DIOPHANTINE EQUATION y2 = px(Ax2 - C) (C=2, ±1, ±4)
    Bencherif, Farid
    Boumahdi, Rachid
    Garici, Tarek
    Schedler, Zak
    COLLOQUIUM MATHEMATICUM, 2020, 159 (02) : 243 - 257
  • [7] ON THE DIOPHANTINE EQUATION h(a)x2
    Berbara, Nacira
    Kihel, Omar
    Mavecha, Sukrawan
    Midgley, Joel
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (02) : 201 - 206
  • [8] On the Diophantine equations x2 - Dy2 = -1 and x2 - Dy2 = 4
    Chen, Bingzhou
    Luo, Jiagui
    AIMS MATHEMATICS, 2019, 4 (04): : 1170 - 1180
  • [9] Triangular numbers in the associated Pell sequence and diophantine equations x2 (x+1)2=8 y2±4
    Prasad, VSR
    Rao, BS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (11) : 1643 - 1648
  • [10] On the diophantine equation X2-(1+a2)Y4=-2a
    Yuan PingZhi
    Zhang ZhongFeng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2143 - 2158