Characterization of the Complete Chloroplast Genome Sequence of the Socotra Dragon`s Blood Tree (Dracaena cinnabari Balf.)

被引:6
作者
Celinski, Konrad [1 ]
Sokolowska, Joanna [1 ]
Fuchs, Hanna [2 ]
Madera, Petr [3 ]
Wiland-Szymanska, Justyna [4 ,5 ]
机构
[1] Adam Mickiewicz Univ, Fac Biol, Sch Nat Sci, Dept Genet,Inst Expt Biol, Uniwersytetu Poznanskiego 6, PL-61614 Poznan, Poland
[2] Polish Acad Sci, Inst Dendrol, Parkowa 5, PL-62035 Kornik, Poland
[3] Mendel Univ Brno, Fac Forestry & Wood Technol, Dept Forest Bot Dendrol & Geobiocoenol, Zemedelska 1, Brno 61300, Czech Republic
[4] Adam Mickiewicz Univ, Dept Systemat & Environm Bot, Inst Environm Biol, Fac Biol,Sch Nat Sci, Uniwersytetu Poznanskiego 6, PL-61614 Poznan, Poland
[5] Adam Mickiewicz Univ, Bot Garden, Ul Dabrowskiego 165, PL-60594 Poznan, Poland
关键词
Dracaena; chloroplast genome; conservation genetics; Socotra dragon`s blood tree; taxonomy; MICROSATELLITE LOCI; GROWTH DYNAMICS; ASPARAGACEAE; AMPLIFICATION; NOLINOIDEAE; ALIGNMENT; BUNDLES;
D O I
10.3390/f13060932
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The Socotra dragon`s blood tree (Dracaena cinnabari Balf.) is endemic to the island of Socotra in Yemen. This iconic species plays an essential role in the survival of associated organisms, acting as an umbrella tree. Overexploitation, overgrazing by livestock, global climate change, and insufficient regeneration mean that the populations of this valuable species are declining in the wild. Although there are many studies on the morphology, anatomy, and physiology of D. cinnabari, no genomic analysis of this endangered species has been performed so far. Therefore, the main aim of this study was to characterize the complete chloroplast sequence genome of D. cinnabari for conservation purposes. The D. cinnabari chloroplast genome is 155,371 bp with a total GC content of 37.5%. It has a quadripartite plastid genome structure composed of one large single-copy region of 83,870 bp, one small single-copy region of 18,471 bp, and two inverted repeat regions of 26,515 bp each. One hundred and thirty-two genes were annotated, 86 of which are protein-coding genes, 38 are transfer RNAs, and eight are ribosomal RNAs. Forty simple sequence repeats have also been identified in this chloroplast genome. Comparative analysis of complete sequences of D. cinnabari chloroplast genomes with other species of the genus Dracaena showed a very high conservativeness of their structure and organization. Phylogenetic inference showed that D. cinnabari is much closer to D. draco, D. cochinchinensis, and D. cambodiana than to D. terniflora, D. angustifolia, D. hokouensis, and D. elliptica. The results obtained in this study provide new and valuable omics data for further phylogenetic studies of the genus Dracaena as well as enable the protection of genetic resources of highly endangered D. cinnabari.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Age structure and growth of Dracaena cinnabari populations on Socotra [J].
Adolt, R ;
Pavlis, J .
TREES-STRUCTURE AND FUNCTION, 2004, 18 (01) :43-53
[2]   Exploring the historical distribution of Dracaena cinnabari using ethnobotanical knowledge on Socotra Island, Yemen [J].
Al-Okaishi, Abdulraqeb .
JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE, 2021, 17 (01)
[3]   Will dragonblood survive the next period of climate change?: Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen) [J].
Attorre, Fabio ;
Francesconi, Fabio ;
Taleb, Nadim ;
Scholte, Paul ;
Saed, Ahmed ;
Alfo, Marco ;
Bruno, Franco .
BIOLOGICAL CONSERVATION, 2007, 138 (3-4) :430-439
[4]   MISA-web: a web server for microsatellite prediction [J].
Beier, Sebastian ;
Thiel, Thomas ;
Muench, Thomas ;
Scholz, Uwe ;
Mascher, Martin .
BIOINFORMATICS, 2017, 33 (16) :2583-2585
[5]   Complete Chloroplast Genome Sequence and Phylogenetic Inference of the Canary Islands Dragon Tree (Dracaena draco L.) [J].
Celinski, Konrad ;
Kijak, Hanna ;
Wiland-Szymanska, Justyna .
FORESTS, 2020, 11 (03)
[6]   Cross-species amplification and characterization of microsatellite loci in Pinus mugo Turra [J].
Celinski, Konrad ;
Pawlaczyk, Ewa Maria ;
Wojnicka-Poltorak, Aleksandra ;
Chudzinska, Ewa ;
Prus-Glowacki, Wieslaw .
BIOLOGIA, 2013, 68 (04) :621-626
[7]   tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes [J].
Chan, Patricia P. ;
Lin, Brian Y. ;
Mak, Allysia J. ;
Lowe, Todd M. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (16) :9077-9096
[8]   DNA Barcoding and Phylogenomic Analysis of the Genus Fritillaria in China Based on Complete Chloroplast Genomes [J].
Chen, Qi ;
Hu, Haisu ;
Zhang, Dequan .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[9]   Mauve: Multiple alignment of conserved genomic sequence with rearrangements [J].
Darling, ACE ;
Mau, B ;
Blattner, FR ;
Perna, NT .
GENOME RESEARCH, 2004, 14 (07) :1394-1403
[10]  
Doyle JJ., 1987, Phytochem Bull, V19, P11, DOI DOI 10.2307/2419362