Multi-Objective Optimization of Laminar Heat Transfer and Friction Factor in Rectangular Microchannel With Rectangular Vortex Generators: An Application of NSGA-II With Gene Expression Programing Metamodel

被引:23
作者
Datta, Aparesh [1 ]
Das, Ajoy Kumar [1 ]
Dey, Prasenjit [1 ]
Sanyal, Dipankar [2 ]
机构
[1] Natl Inst Technol Agartala, Dept Mech Engn, Jirania 799046, Tripura, India
[2] Jadavpur Univ, Dept Mech Engn, Kolkata 700032, W Bengal, India
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2017年 / 139卷 / 07期
关键词
microchannel; heat transfer; vortex generator; GEP; NSGA-II; FIELD SYNERGY PRINCIPLE; SHAPED REENTRANT CAVITIES; TRANSFER ENHANCEMENT; FORCED-CONVECTION; LONGITUDINAL VORTICES; ENTROPY GENERATION; ELECTRONIC MODULES; PRESSURE-DROP; LIQUID FLOW; FLUID-FLOW;
D O I
10.1115/1.4035890
中图分类号
O414.1 [热力学];
学科分类号
摘要
Improvement of the effectiveness of heat exchanger is the demand of compact and efficient cooling devices. In that respect, a numerical study of fluid flow and heat transfer has been conducted with different arrangements of simple vortex generator (VG) in a rectangular microchannel Reynolds number (Re) in the range between 200 and 1100. The combined effect of spanwise and pitchwise distance of VG on heat transfer is investigated rigorously to observe the dependence of heat transfer on both. By processing the numerical predictions through gene expression programing and genetic algorithm optimization, the output variations in heat transfer, or Nusselt number, and friction factor with Re and locations of VGs in the channel are predicted in the form of explicit equations. The predicted monotonic increase of the outputs with Re shows heat transfer enhancement of 40-135% at the cost of increased pressure drop by 62-186.7% with respect to channels without VGs.
引用
收藏
页数:12
相关论文
共 62 条
[1]   An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications [J].
Ahmed, H. E. ;
Mohammed, H. A. ;
Yusoff, M. Z. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (08) :5951-5993
[2]   Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators [J].
Al-Asadi, Mushtaq T. ;
Alkasmoul, F. S. ;
Wilson, M. C. T. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 :40-47
[3]   Effect of a delta-winglet vortex pair on the performance of a tube-fin heat exchanger [J].
Allison, C. B. ;
Dally, B. B. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (25-26) :5065-5072
[4]  
[Anonymous], 1991, Handbook of Genetic Algorithms
[5]   Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm [J].
Azarkish, H. ;
Sarvari, S. M. H. ;
Behzadmehr, A. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (11) :2222-2229
[6]   Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves [J].
Bi, C. ;
Tang, G. H. ;
Tao, W. Q. .
APPLIED THERMAL ENGINEERING, 2013, 55 (1-2) :121-132
[7]   A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators [J].
Chen, Chen ;
Teng, Jyh-Tong ;
Cheng, Ching-Hung ;
Jin, Shiping ;
Huang, Suyi ;
Liu, Chao ;
Lee, Ming-Tsang ;
Pan, Hsin-Hung ;
Greif, Ralph .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 69 :203-214
[8]   Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators [J].
Chen, Y ;
Fiebig, M ;
Mitra, NK .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (03) :417-435
[9]   Air-cooling enhancement with delta winglet vortex generators in entrance region of in-line array electronic modules [J].
Chomdee, S. ;
Kiatsiriroat, T. .
HEAT TRANSFER ENGINEERING, 2007, 28 (04) :372-379
[10]   Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators [J].
Chomdee, S. ;
Kiatsiriroat, T. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2006, 33 (05) :618-626